• Title/Summary/Keyword: magnesium water

Search Result 433, Processing Time 0.029 seconds

Mineral extraction from by-products of brown rice using electrodialysis and production of mineral salt containing lower sodium (전기투석을 이용한 현미부산물로부터의 미네랄성분 추출 및 나트륨감량형 미네랄 소금 제조)

  • No, Nam-Doo;Park, Eun-Jung;Kim, Mi-Lim
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.859-866
    • /
    • 2015
  • The purpose of this study was to develop a supplemental healthy food that can help prevent high blood pressure-related diseases caused due to the excessive consumption of sodium in salt. This was achieved by using ion-displacement techniques to produce mineral salt with lower sodium content by using fermented brown rice by-products rich in minerals. Mineral salt containing 2019.2 mg/100 g of potassium, 678.5 mg/100 g of magnesium, 48.7 mg/100 g of calcium, and 19.5 mg/100 g of sodium was obtained by fermenting brown rice by-products to create a culture medium for the mineral salt. Mineral salt containing 1769.7 mg/100 g of potassium, 573.6 mg/100 g of magnesium, 35.3 mg/100 g of calcium, and 19.5 mg/100 g of sodium was obtained by filtering and refining the by-product extract of fermented brown rice. The results showed that when the stream velocity of the instrument used for electrolysis was 200 mL/min and the current and the concentration of the reactive liquid in the purified water chamber were higher, the effect of electrolysis was greater. Ion hot water extraction of the fermented brown rice by-products improved by up to 95% and was collected as purified water within 90 min of the reaction time. Chloride ions with pH 7.4 were produced by mixing sodium hydroxide in a purified saline water chamber with electro-analyzed water. The salt produced in this study contained low sodium, 5.7~30%, as compared to 40% sodium content of the normal salt.

Rheological Behaviour of Water-in-Oil Emulsions using Quaternium-18 Hectorite (쿼터늄-18 헥토라이트를 사용한 Water-in-Oil 에멀젼의 유변학적 거동)

  • Cho, Wan-Goo;Kim, Byung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.407-414
    • /
    • 2009
  • Water-in-Oil (W/O) emulsions are widely used in cosmetics. However, O/W (Oil-in-Water) emulsions are generally superior to W/O emulsions in terms of stability. In this study, we investigated the changes of viscosity, the size of emulsion droplets, and rheological properties of emulsions prepared using distearyldimonium chloride (DDC), magnesium aluminum silicate (MAS) and quaternium-18 hectorite (QH). In addition to the changes of the composition, we tested the condition of homogenization including rotation per minute of the mixer and the mixing time. The viscosity of emulsions with DDC and AMS were not changed with time and the stability of emulsions was stable during the storage time. However, the fluidity of emulsions were low due to the forming gel network in the emulsions. The gelling power of the emulsions with QH was rather weaker than that of the emulsions with DDC and MAS. The viscosity of emulsions with QH was gradually reduced and the phase separation of emulsions with high concentration of oil was observed throughout the storage time, however, the stability of emulsions with DDC, MAS and QH was excellent, the fluidity of emulsions was enhanced, and the viscosity of emulsions was sustained for a long time after setting of emulsions.

Nutritional Components and Safety of Purified Pufferfish (Lagocephalus gloveri) Liver Oil

  • Kim Dong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.4
    • /
    • pp.172-179
    • /
    • 2003
  • The safety of pufferfish (Lagocephalus gloveri) liver oil and the contents of some nutritional components were examined to obtain important information on their use as high valued functional foods. Pufferfish liver oil was extracted by the hot-water method using $1\%$ NaOH solution to remove toxic compounds, and then purified using a general purifying method of fish oil. Any extraordinary clinical symptoms were not observed from all groups administrated with pufferfish liver oil throughout the test period. None of the rats died when administrated the highest concentration of 10 mL/kg of the pufferfish liver oil. Vitamin A content was 114.2 ppm, as a retinal equivalent in the oil extracted using hot-water, but the content was higher (169.3 ppm) in oil extracted using n-hexane. Vitamin D and E were not detected in ppm in oil extracted using hot-water. Vitamin D in the pufferfish liver oil extracted using n-hexane was also undetected, but vitamin E was at 32.5 ppm. Among the 18 minerals detected, the sodium content was the highest at 253.5 ppm, followed by 13.9 ppm ofpotassium, 1.5 ppm of calcium, 0.2 ppm of magnesium, and other trace minerals. The contents of EPA and DHA were $0.8\%\;and\;14.8\%$, respectively, in the pufferfish liver oil extracted using hot-water. Considering these results, there is potential that pufferfish liver oil could be used as a functional food.

Oxygen Release from Peroxide Injected into Soil/Sediment (토양/퇴적물에 주입한 과산화물에서 발생되는 산소 배출)

  • Han, Kyungmin;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.156-159
    • /
    • 2010
  • Peroxide is used frequently to provide electron acceptors to aerobes for the purpose of in situ bioremediation of contaminated soil/sediment. In this study, oxygen release rate of peroxides and factors affecting on dissolution and diffusion of oxygen into pore water were evaluated. Peroxides studied in this study were magnesium peroxide ($MgO_2$), calcium peroxide ($CaO_2$), and sodium percarbonate ($Na_2CO_3{\cdot}1.5H_2O_2$). $Na_2CO_3{\cdot}1.5H_2O_2$ showed the highest oxygen release rate per unit mass and the shortest release duration time among three peroxides. A simple first-order decay model for predicting the release rate of oxygen from peroxide into pore water was presented and used to fit the experimental data. The first order oxygen release rate constants k for $MgO_2$, $CaO_2$ and $Na_2CO_3{\cdot}1.5H_2O_2$ were 0.45 /hr, 3.22 /hr and 134 /hr, respectively. If $MgO_2$ was mixed with clay, oxygen release rate was lowered significantly mainly due to limitation of contact area and diffusion, implying that oxygen can be provided to the indigenous aerobes for the extended period of time.

Seasonal Variations of Chemical Composition of the Estuary Water at the Tidal Flat in Nack Dong River from Nov. 1962 to Oct. 1963 (洛東江 河口 干潟地 水質의 年間變化 (1962年 11月~1963年 10月))

  • Won, Chong-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.192-199
    • /
    • 1964
  • Seasonal variations of the contents of some chemical constituents of the estuary water at two definite stations of the laver bed in Nack Dong River have been determined over one tidal cycle in spring tide from Nov. 1962 to Oct. 1963. The ranges of annual variations of the contents at station 1 and station 2 are as follows: water temp. $2.2-30.8^{\circ}C$, $3.3-28.0^{\circ}C$; pH 7.8-8.5, 7.9-8.4; chlorosity 0.025-19.66 g/l, 4.31-19.56 g/l; magnesium 0.00355-1.565 g/l, -1.524 g/l; calcium 0.00557-0.482 g/l, - -0.590 g/l; saturation % of dissolved oxygen 71.8-123.2%, 88.2-113.8%; silicate-Si 8.00-125.5 ${\mu}$g-at./l, 6.70-100.5 ${\mu}$g-at./l; phosphate-P 0.12-1.47 ${\mu}$g-at./l, 0.11-1.09 ${\mu}$g-at./l; ammonia-N 4.88-25.45 ${\mu}$g-at./l, 4.12-17.58 ${\mu}$g-at./l; nitrite-N 0.07-0.75 ${\mu}$g-at./l, 0.08-0.58 ${\mu}$g-at./l; nitrate-N 2.11-6.89 ${\mu}$g-at./l, 1.85-7.43 ${\mu}$g-at./l each. The annual tidal variations of the constituents at station 1 are more remarkable than of station 2. The chlorosity, magnesium and calcium contents are decreased nearing the slack after ebb, and increased abruptly then one hour after the slack. The contents of the other constituents are varied according to the chlorosity variety. The values of pH, chlorosity, magnesium and calcium contents are lower in summer than winter, while the difference of seasonal variations of the % saturation of dissolved oxygen is not remarkable. The phosphate-P and total nitrogen contents have a tendency of increasing within a definite range, while the silicate-Si increase proportionally, to the increasing of mixing percentage of fresh water. The average values of Si/P and N/P are several times greater than of the normal in sea water. The chemical composition considered from the value of Mg/Cl or Ca/Cl of estuarine water varies according to the variety of chlorosity, even at the high chlorosity of 19 g/l.

  • PDF

Effect of Phosphate-to-binder and Water-to-binder Ratio on Magnesia-potassium Phosphate Cement (마그네시아-인산칼륨 시멘트에 대한 인산염 비 및 물-결합재비의 영향)

  • Lee, Kyung-Ho;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.275-281
    • /
    • 2017
  • This study examined the effect of water-to-binder ratio (W/B) and phosphate-to-binder ratio (P/B) on the flow, setting time, compressive strength development, and pH variation of magnesium-potassium phosphate composites, MKPC mortars. Ten mortars mixtures were prepared with the W/B varying from 20% to 40% at each P/B of 0.3 or 0.5. The hydration products and microstructural pore distribution of the MKPC pastes were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP). The initial flow and setting time of MKPC mortars tended to decrease with an increase of P/B, indicating that the final setting time was shortened by approximately 24% when P/B increased from 0.3 to 0.5. The slope of the early-strength development measured in the MKPC mortars was considerably higher than that of cement concrete specified in code provisions. For obtaining a relatively good 28-day strength (above 30 MPa) and a near neutral pH (below 9.0) in MKPC mortars, the P/B and W/B need to be selected as 0.5 and 30%, respectively. The strubite-K crystal increased with the increases of P/B and W/B, which leads to the decrease of the macro-capillary pores.

Dynamics of Exchangeable Magnesium of Soil in Long-term Fertilization Experiment

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.641-647
    • /
    • 2015
  • Monitoring of soil fertility by long-term application of fertilizers is necessary to improve the fertility of soil and the productivity of crop. The objective of this study was conducted to investigate the changes of exchangeable Mg by continuous application of fertilizers from 1969 to 2014. The treatments were no fertilization (No fert.) and fertilization (NPK, NPK+C, NPK+S, and NPK+CS). The concentration of exchangeable Mg in No fert., NPK+C, and NPK+S treatments tended to increase from 1965 to 1975, but decrease gradually from 1976 to 1987, and increase again after 1988. Based on these, the changes of exchangeable Mg were divided into period I ('69 ~'75), period II ('76~'87), and period III ('88~'14). Especially, exchangeable Mg decreased in the period II. This was presumed that a significant amount of Mg from topsoil were leached into subsoil by break of plow pan and some of subsoil was incorporated into topsoil according to change of plowing depth by replacement of tillage machinery. It could be possible that exchangeable Mg in NPK, NPK+S, and NPK+CS was accumulated in the depth of 15~20 cm. For the period III, exchangeable Mg in No fert., NPK, NPK+C, NPK+S, and NPK+CS treatments increased at rates of 0.013, 0.018, 0.015, 0.023, and $0.024cmolckg^{-1}{\cdot}yr^{-1}$ respectively. Exchangeable Mg level in NPK+S was lower than the other treatments in the period I and period II, but higher than in the period III. This result was attributed to replacement of silicate fertilizer type from wollastonite (Mg 0.3%) to silicate fertilizer (Mg 3%). Also, exchangeable Mg level of No fert. treatment increased, which showed that Mg concentration of irrigated water had the greatest impact on Mg accumulation of soil. Recently, Mg level of irrigated water tended to increase, indicating that Mg concentration of water will affect greatly the concentration of exchangeable Mg of soil in the future. Like these, the changes of exchangeable Mg were greatly influenced by agricultural environment such as plowing depth, plow pan, content of fertilizer, and quality of irrigated water. Considering these agricultural environment, the proper management of soil is needed for the improvement of soil fertility and crop productivity.

Nutrient dynamics in montane wetlands, emphasizing the relationship between cellulose decomposition and water chemistry

  • Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.33-42
    • /
    • 2005
  • Wetlands often function as a nutrient sink. It is well known that increased input of nutrient increases the primary productivity but it is not well understood what is the fate of produced biomass in wetland ecosystem. Water and sediment quality, decomposition rate of cellulose, and sediment accumulation rate in 11 montane marshes in northern Sierra Nevada, California were analyzed to trace the effect of nitrogen and phosphorus content in water on nutrient dynamics. Concentrations of ammonium, nitrate, soluble reactive phosphorus (SRP) in water were in the range of 27 to 607, 8 to 73, and 6 to 109 ppb, respectively. Concentrations of ammonium, calcium, magnesium, sodium, and potassium in water were the highest in Markleeville, which has been impacted by animal farming. Nitrate and SRP concentrations in water were the highest in Snow Creek, which has been impacted by human residence and a golf course. Cellulose decomposition rates ranged from 4 to 75 % per 90 days and the highest values were measured in Snow Creek. Concentrations of total carbon, nitrogen, and phosphorus in sediment ranged from 8.0 to 42.8, 0.5 to 3.0, and 0.076 to 0.162 %, respectively. Accumulation rates of carbon, nitrogen, and phosphorus fluctuated between 32.7 to 97.1, 2.4 to 9.0, and 0.08 to $1.14gm^{-2}yr{-1}$, respectively. Accumulation rates of carbon and nitrogen were highest in Markleeville and that of phosphorus was highest in Lake Van Norden. Correlation analysis showed that decay rate is correlated with ammonium, nitrate, and SRP in water. There was no correlation between element content in sediment and water quality. Nitrogen accumulation rate was correlated with ammonium in water. These results showed that element accumulation rates in montane wetland ecosystems are determined by decomposition rate rather than nutrient input. This study stresses a need for eco-physiological researches on the response of microbial community to increased nutrient input and environmental change because the microbial community is responsible for the decomposition process.

  • PDF

STUDIES ON THE WATER QUALITY OF NAGDONGG RIVER DOWNSTREAM FOR DRINKING WATER AND INDUSTRIAL SUPPLY WATER 1. SEASONAL VARIATIONS OF THE CONTENTS OF INORGANIC CONSERVATIVE CONSTITUENTS OF ANGDONG RIVER DOWNSTREAM WATER FROM MAY 1977 APRIL 1978 (음료수 및 공업용수로서의 낙동강 하류수질에 대하여 1. 남지이남 낙동강 하류수의 무기보존성분량의 년간변동에 대하여(1977년 5월~1978년 4월))

  • WON Jong Hun;YANG Han Serb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.3
    • /
    • pp.129-138
    • /
    • 1978
  • The contents of inorganic conservative constituents in the downstream water were determined in spring tides of every month from May 1977 to April 1978 at eight stations of Nagdong River. Samples were taken at the intervals of one or two hours from 7 a. m. to 7 p. m. at each station. Annual ranges and means of the chemical constituents over all the stations except station one, Kupo, ate as follows: pH 6.4-9.3, 7.7; electrical conductivity $0.085-0.345\times10^3\;\mu\mho/cm,\;0.196\times10^3\;\mu\mho/cm;$ chloride 5.8-50.0ppm, 17.7ppm: fluoride ND-0.19 ppm, 0.06 ppm: sulfate 5.5-41.1 ppm, 20.7 ppm; calcium 6-26 ppm, 17 ppm; magnesium 2.0-12.8 ppm, 5.1 ppm; sodium 7-26 ppm, 13 ppm; potassium 1.4-3.8 pprn, 2.3 ppm respectively. The seasonal variations of contents of the chemical constituents were not large and showed nearly definite values at all the stations except station one, Kupo. At station one, seasonal variations were large and the contents were excessively high due to inflow of seawater compared with other stations. The values over 50 ppm in chloride were not determined during the determination period at Mul Geum where the intake station for Busan city water is located. Most constituents except pH and fluoride were over the criteria for drinking water at Kupo, while at other stations only pH value was exceeded the upper limit of the criterion especially in summer period. The pH values tended to increase in the afternoon when water temperature was high. The chloride concentration was shown the highest value at station one, Kupo, with about 2 hours delay after high water of Busan harbour and 3-3.5 hours at Mul Geum.

  • PDF

A Study on the Mechanical, Thermal, Morphological, and Water Absorption Properties of Wood Plastic Composites (WPCs) Filled with Talc and Environmentally-Friendly Flame Retardants (친환경 난연제와 탈크를 첨가한 목재·플라스틱 복합재의 기계적, 열적, 형태학적 및 수분흡수 특성에 관한 연구)

  • Lee, Danbee;Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • Wood plastic composite (WPC) is a green composite made of wood flour and thermoplastics to provide better performance by removing the defects of both wood and plastics. However, relatively low thermal stability and poor fire resistance of wood and plastics included in WPC have been still issues in using WPC as a building material for interior applications. This study investigated the effect of environmentally-friendly flame retardants (EFFRs) on the mechanical, thermal, morphological, and water absorption properties of wood flour (WF)/talc/polypropylene (PP) composites in comparison with neat PP. The whole EFFRs-filled WF/talc/PP composites showed higher values in flexural strength, flexural modulus, and impact strength compared to neat PP. In thermal properties, aluminum hydroxide (AH)-filled composite showed a $36^{\circ}C$ reduction in maximum thermal decomposition temperature ($T_{max}$) compared to neat PP, but magnesium hydroxide (MH) played an important role in improving thermal stability of filled composite by showing the highest $T_{max}$. From this research, it can be said that MH has potentials in reinforcing PP-based WPCs with improvement of thermal stability.