• Title/Summary/Keyword: magnesium sulfate attack

Search Result 20, Processing Time 0.019 seconds

Durability of CFRP strengthened RC beams under wetting and drying cycles of magnesium sulfate attack

  • Rahmani, Hamid;Alipour, Soha;Mansoorkhani, Ali Alipour
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2019
  • Durability of strengthened reinforced concrete (RC) beams with CFRP sheets under wetting and drying cycles of magnesium sulfate attack is investigated in this research. Accordingly, 18 RC beams were designed and made where 10 of them were strengthened by CFRP sheets at their tension side. Magnesium sulfate attack and wetting and drying cycles with water and magnesium sulfate solution were considered as exposure conditions. Finally, flexural performance of the beams was measured before and after 5 months of exposure. Results indicated that the bending capacity of the strengthened RC beams was reduced about 10% after 5 months of immersion in the magnesium sulfate solution. Wetting and drying cycles of magnesium sulfate solution reduced the bending capacity of the strengthened RC beams about 7%. Also, flexural capacity reduction of the strengthened RC beams in water and under wetting and drying cycles of water was negligible.

Microstructural Investigation on the Deterioration of Silica Fume Blended Cement Matrix Under Magnesium Sulfate Attack (황산마그네슘 침식을 받은 실리카 퓸 혼합 시멘트 경화체의 성능저하에 대한 미세구조적 관찰)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.55-62
    • /
    • 2008
  • This paper reports the effect of replacement levels of silica fume on the resistance to magnesium sulfate attack. Mortar specimens incorporating silica fume were exposed to 5% magnesium sulfate solution for 360 days at ambient temperature. The main variable was the replacement levels of silica fume(0, 5, 10 and 15% of cement by mass). The resistance of mortar specimens incorporating silica fume against magnesium sulfate attack was regularly monitored by measuring compressive strength and expansion. In addition, in order to investigate the reactants formed by magnesium sulfate attack, various instrumental analyses such as XRD, SEM and DSC were used. Results demonstrated that the formation of gypsum, thaumasite and brucite led to a significant deterioration due to magnesium sulfate attack in cement matrix incorporating silica fume.

Magnesium Sulfate Attack and Deterioration Mode of Metakaolin Blended Cement Matrix (메타카올린 혼합 시멘트 경화체의 황산마그네슘 침식 및 성능저하 모드)

  • Lee, Seung-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • In this study, experimental findings on the resistance to magnesium sulfate attack of portland cement mortar and paste specimens incorporating metakaolin (MK) are presented. Specimens with four replacement levels of metakaolin (0, 5, 10 and 15% of cement by mass) were exposed to solutions with concentrations of 0.424% and 4.24% as $MgSO_4$ at ambient temperature. The resistance of mortar specimens was evaluated through visual examination and linear expansion measurements. Additionally, in order to identify the products formed by magnesium sulfate attack, microstructural analyses such as XRD, DSC and SEM/EDS were also performed on the paste samples incorporating metakaolin. Results confirmed that mortar specimens with a high replacement level of metakaolin exhibited lower resistance to a higher concentration of magnesium sulfate solution. It was found that the negative effect of metakaolin on the magnesium sulfate attack is partially attributed to the formation of gypsum and thaumasite. Conclusively, it is necessary to pay a special attention when using metakaolin in concrete structures, particularly under highly concentrated magnesium sulfate environment.

Magnesium Sulfate Resistance of Concrete Containing Waste Glass (폐유리를 혼입한 콘크리트의 황산마그네슘 저항성에 관한 연구)

  • Kim, Young-Su;Jeong, Yoo-Jin;Lee, Dong-Un
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.109-116
    • /
    • 2009
  • The magnesium sulfate solution digestion test carried out for resistance of concrete containing waste glass powder on magnesium sulfate attack. Moreover, it yielded S.D.F index was used for the criteria of quantitative assessment to the resistance of magnesium sulfate for the purpose of evaluation of chemical deterioration on concrete. Furthermore, to evaluate for micro-cracks within concrete and external corrosion, the weight variation of specimens and the dynamic elasticity were compared and analyzed and also the applicability was examined using the analysis of product of hydration through out observing external deformation and micro-structural deformation.

Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete (콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2010
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer, sewage and wastewater, soil, groundwater, and seawater etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to concrete matrix by forming expansive hydration products due to the reaction between portland cement hydration products and acid and sulfate ions. Objectives of this experimental research are to investigate the effect of mineral admixtures on the resistance to acid and sulfate attack in concrete and to suggest high-resistance concrete mix against acid and sulfate attack. For this purpose, concretes specimens with three types of cement (ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC) composed of different types and proportions of admixtures) were prepared at water-biner ratios of 32% and 43%. The concrete specimens were immersed in fresh water, 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solutions for 28, 56, 91, 182, and 365 days, respectively. To evaluate the resistance to acid and sulfate for concrete specimens, visual appearance changes were observed and compressive strength ratios and mass change ratios were measured. It was observed from the test results that the resistance against sulfuric acid and sodium sulfate solutions of the concretes containing mineral admixtures were much better than that of OPC concrete, but in the case of magnesium sulfate solution the concretes containing mineral admixtures was less resistant than OPC concrete due to formation of magnesium silicate hydrate (M-S-H) which is non-cementitious.

A Study on the Sulfate Attack Resistance of Concrete Using EAF Slag as Fine Aggregate (전기로슬래그 잔골재를 사용한 콘크리트의 황산염침식 저항성에 관한 연구)

  • Park, Moon-Seok;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.81-87
    • /
    • 2009
  • The purpose of this study is to investigate the sulfate attack resistance of concrete using the EAF(electric arc furnace) Slag as fine aggregate. In order to figure out the effects of magnesium sulfate solution on the durability of concrete using the EAF Slag as fine aggregate, the experiments for the immerging test in the 10% magnesium sulfate solution was executed by selecting factors such as aging processes, replacement ratio(0, 10, 20, 30, 50%), and duration of immerging. The specimens were made with various EAF slag replacements for fine aggregates and with W/C ratio fixed 0.45. compressive strength and S.D.F(Sulfate Deterioration Factor), weight change, and SEM(Scanning Electron Microscope) were tested. From the test results, EAF slag aggregate treated with accelerated aging is better than treated with air aging. The compressive strength and resistance to the sulfate attack is slightly improved with an increase in the EAF slag aggregate treated with accelerated aging replacement for aggregate.

Resistance on the Magnesium Sulfate Attack of Mortars with Silica Fume (실리카흄 혼합 모르타르의 황산마그네슘 저항성)

  • 문한영;이승태;유지훈;최강식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.379-384
    • /
    • 2002
  • The deterioration of concrete due to sulfate ions in various sulfate environments such as groundwater, soil and seawater is one of important factors degrading the durability of concrete structure. The aim of this paper is to evaluate on the magnesium sulfate alttack resistance of mortars with silica fume. In this study, compressive strength loss and length change of prismatic mortars, containing silica fume, immersed in 5% magnesium sulfate solution for 270 days were investigated. Additionally, paste powders with same binder were used to observe reactants of cement matrices through the instrumental analysis such as XRD, SEM and MIP. Results obtained from this study indicate that the greater damaging effects of the magnesium soulution are due to the decomposition of the C-S-H gel to M-C-S-H.

  • PDF

Sulfate Attack on the Cation Type Accompanying $SO_4^{2-}$ (황산이온과 결합하는 양이온의 종류에 따른 황산염침식)

  • Moon, Han-Young;Kim, Seong-Soo;Jung, Ho-Seop;Lee, Seung-Tae;Kim, Jong-Pil;Koh, Joon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.221-224
    • /
    • 2006
  • This paper reports a study carried out to investigate sulfate attack caused by cation type(sodium, magnesium) accompanying $SO_4^{2-}$ ions in sulfate solutions. The sulfate attack of mortar specimens was evaluate using the visual appearance, compressive strength loss and expansion. In addition, at the end of 360 days, the products of sulfate attack and the mechanism of attack were investigated through x-ray diffraction.

  • PDF

Assessment on the Seawater Attack Resistance of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 해수침식에 대한저항성 평가)

  • 문한영;김성수;안태송;이승태;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.683-688
    • /
    • 2001
  • In case of constructing the concrete structures under seawater environment, the concrete suffers from deterioration due to penetration of various ions such as chloride, sulfate and magnesium in seawater. Tn the present study, Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of antiwashout underwater concrete. From the results of compressive strength, it was found that blended cement concrete due to mineral admixtures such as fly ash(FA) and ground granulated blast-furnace slag(SGC), were superior to ordinary portland cement concrete with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the formed reactants of ordinary portland cement paste by sulfate and magnesium ions led to the deterioration of concrete. As expected, however, the blended cements with FA or SGC have a good resistance to seawater attack. This paper would discuss the mechanism of seawater deterioration and benefical effects of antiwashout underwater concretes with mineral admixtures.

  • PDF

Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers

  • Tammam, Yosra;Uysal, Mucteba;Canpolat, Orhan
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.335-346
    • /
    • 2022
  • Geopolymers are an important alternative material supporting recycling, sustainability, and waste management. Durability properties are among the most critical parameters to be investigated; in this study, the durability of manufactured geopolymer samples under the attack of 10% magnesium sulfate and 10% sodium sulfate solution was investigated. 180 cycles of freezing and thawing were also tested. The experimentally obtained results investigate the durability of geopolymer mortar prepared with fly ash (class F) and alkali activator. Three different quarry dust wastes replaced the river sand aggregate: limestone, marble, and basalt powder as fine filler aggregate in three different replacement ratios of 25%, 50%, and 75% to produce ten series of geopolymer composites. The geopolymer samples' visual appearance, weight changes, UPV, and strength properties were studied for up to 12 months at different time intervals of exposure to sulfate solutions to investigate sulfate resistance. In addition, Scanning Electron Microscopy (SEM), EDS, and XRD were used to study the microstructure of the samples. It was beneficial to include quarry waste as a filler aggregate in durability and mechanical properties. The compact matrix was demonstrated by microstructural analysis of the manufactured specimens. The geopolymer mortars immersed in sodium sulfate showed less strength reduction and deterioration than magnesium sulfate, indicating that magnesium sulfate is more aggressive than sodium sulfate. Therefore, it is concluded that using waste dust interrogation with partial replacement of river sand with fly ash-based geopolymers has satisfactory results in terms of durability properties of freeze-thaw and sulfate resistance.