• Title/Summary/Keyword: magnesium powder

Search Result 177, Processing Time 0.022 seconds

Effect of MgO and NH4OH on Formation of 5Mg(OH)2·MgSO4·3H2O Whiskers (침상형 5Mg(OH)2·MgSO4·3H2O 형성에 관한 MgO와 NH4OH 영향)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Hyung-Tae;Kim, Kyung-Ja;Kim, Young-Woong;Kim, Woong;Kim, Yoo-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.283-289
    • /
    • 2011
  • Magnesium hydroxide sulfate hydrate whiskers ($5Mg(OH)_2{\cdot}MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH) were prepared using hydrothermal reaction with magnesium oxide (MgO) and magnesium sulfate ($MgSO_4{\cdot}7H_2O$) as the starting materials. The effects of the molar ratio of $MgSO_4$/MgO and amount of $NH_4OH$ were studied. As a result, 513 MHSH whiskers co-existed with hexagonal plate $Mg(OH)_2$ at low concentration of $SO_4^{2-}$. The molar ratio of $MgSO_4{\cdot}7H_2O$/MgO was 7:1, uniform 513 MHSH whiskers were formed without impurity such as $Mg(OH)_2$. Appropriate amount of $NH_4OH$ has affected to formation of high quality MHSH. Their morphologies and structures were determined by powder X-ray diffraction (XRD) scanning electron microscopy (SEM) and thermo-gravimetric analyzer (TGA).

Synthesis and Characterization of Zinc Phosphate Cement Powder and Cement-forming Liquid

  • Park, Choon-Keun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.269-273
    • /
    • 1997
  • Chemical composition of cement powder influences the setting time and early compressive strength development. The setting time increases as the amounts of zinc oxide and magnesium oxide are increased. For one day compressive strength development, a cement powder with a composition 90% ZnO, 8% MgO and 2% silica resulted in the highest strength (greater than 1, 090 kg/$\textrm{cm}^2$). Cement-forming liquids also need to be buffered, with both aluminum and zinc ions, for a good consistency and a higher strength of the zinc phosphate cement. These liquids control the setting reactions.

  • PDF

A Measure on the Use of Metal Fire Extinguisher for Effective Early Extinguishment of Magnesium Fire (마그네슘 화재의 효과적인 초기소화를 위한 금속화재용 소화기 활용방안에 관한 연구)

  • Nam, Ki-Hun;Lee, Jun-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.795-800
    • /
    • 2021
  • Magnesium fires require early fire extinguishment due to impulsive and rapid-fire expansion that makes difficult fire fighting. For this reason, efficient early fire fighting and appropriate prevention of fire spread are considered mainly as significant fire extinction measures. However, there is a limit to developing tools for metal fire fighting, such as devices, facilities, and fire extinguishing agents, due to a lack of regulatory instruments in South Korea. It often generates challenges to early fire fighting implementation by fire responders. Thus, the aim of this study is to investigate a measure for securing the efficiency of early fire fighting in magnesium. This study identified the applicability of the metal fire extinguisher used in the United States for magnesium fire through a performance test of a fire extinguishing agent for metal fire. Moreover, we implemented a free burning experiment using magnesium powder to compare varying combustion and extinction process that could occur during applying metal fire extinguishers. Finally, this study suggests measures of the use and application of metal fire extinguishers for magnesium.

Precipitation of Magnesium Sulfate from Concentrated Magnesium Solution for Recovery of Magnesium in Seawater (해수 중 마그네슘 회수를 위한 마그네슘 농축액으로부터 황산마그네슘의 석출)

  • Cho, Taeyeon;Kim, Myoung-Jin
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.32-41
    • /
    • 2016
  • The precipitation test, which is the last step of magnesium recovery process consisting of three processes (pre-precipitation, selective dissolution of magnesium, precipitation) is performed to obtain magnesium sulfate powder from seawater. In the study, we succeed in precipitating the magnesium sulfate by adding acetone into the solution of magnesium over 4 times concentrated from seawater. The yield efficiency of magnesium sulfate increases with increasing pH and the ratio of added acetone. More than 99% of magnesium is obtained as magnesium sulfate hydrate ($MgSO_4{\cdot}6H_2O$) under the following conditions; pH 1.0 ~ 1.5, and the ratio of solution and acetone 1 : 1.5 (v:v). The acetone used in the precipitation process is recovered by the fractional distillation.

Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM) (고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동)

  • Song, Joon-Woo;Kim, Hyo-Seob;Kim, Hong-Moule;Kim, Taek-Soo;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.302-311
    • /
    • 2010
  • In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

Growth of magnesium oxide nanoparticles onto graphene oxide nanosheets by sol-gel process

  • Lee, Ju Ran;Koo, Hye Young
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.206-209
    • /
    • 2013
  • Nanocomposites comprised of graphene oxide (GO) nanosheets and magnesium oxide (MgO) nanoparticles were synthesized by a sol-gel process. The synthesized samples were studied by X-ray powder diffraction, atomic force microscopy, transmission electron microscopy, and energy-dispersive X-ray analysis. The results show that the MgO nanoparticles, with an average diameter of 70 nm, are decorated uniformly on the surface of the GOs. By controlling the concentration of the MgO precursors and reaction cycles, it was possible to control the loading density and the size of the resulting MgO particles. Because the MgO particles are robustly anchored on the GO structure, the MgO/GOs nanocomposites will have future applications in the fields of adsorption and chemical sensing.

Magnesium Sulfate Resistance of Concrete Containing Waste Glass (폐유리를 혼입한 콘크리트의 황산마그네슘 저항성에 관한 연구)

  • Kim, Young-Su;Jeong, Yoo-Jin;Lee, Dong-Un
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.109-116
    • /
    • 2009
  • The magnesium sulfate solution digestion test carried out for resistance of concrete containing waste glass powder on magnesium sulfate attack. Moreover, it yielded S.D.F index was used for the criteria of quantitative assessment to the resistance of magnesium sulfate for the purpose of evaluation of chemical deterioration on concrete. Furthermore, to evaluate for micro-cracks within concrete and external corrosion, the weight variation of specimens and the dynamic elasticity were compared and analyzed and also the applicability was examined using the analysis of product of hydration through out observing external deformation and micro-structural deformation.

Effect of Magnesium Oxide on the Nitridation of Silicon Compact. (규소의 질화반응에 있어 산화마그네시움의 효과)

  • 박금철;최상원
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.305-314
    • /
    • 1983
  • In order to enhance the rate of th nitridation and to give the high density of reaction-bonded silicon nitride MgO powder as nitriding aid were added to silicon powders and the mixture was pressed isostatically into compacts which were nitrided in the furnace of 1, 35$0^{\circ}C$ where 95% $N_2$-5% $H_2$ gases were flowing. As the other nitriding aid $Mg(NO_3)_2 6H_2O$ was selected, A slip made of magnesium nitrate solution and fine silicon particles was spray-dried and then decomposed at 30$0^{\circ}C$. Magnesium oxide-coated silicon powders were formed into compacts prior to the nitridation on the same condition as the former. Magnesium nitrate (MgO, produced from the decomposition of magnesium nitrate) was more effective for the formation of the $\beta$-phase in the initial stage of the nitridation probably due to the easy formation of $MgO-SiO_2$-metal oxide eutectic melt. It has been confirmed that forsterite was formed as a result of the reaction between MgO and $SiO_2$ film of silicon surface. It was considered that MgO produced from magnesium nitrate may be finer more reactive and more uniformly distributed on the surface of silicon particles than original MgO. The higher the forming pressure was the more the $\beta$-phase was formed.

  • PDF

Magnesium potassium phosphate cements to immobilize radioactive concrete wastes generated by decommissioning of nuclear power plants

  • Pyo, Jae-Young;Um, Wooyong;Heo, Jong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2261-2267
    • /
    • 2021
  • This paper evaluates the efficacy of magnesium potassium phosphate cements (MKPCs) as waste forms for the solidification of radioactive concrete powder wastes produced by the decommissioning of nuclear power plants. MKPC specimens that contained up to 50 wt% of simulated concrete powder wastes (SCPWs) were evaluated. We measured the porosity and compressive strength of the MKPC specimens, observing them using scanning electron microscopy and X-ray diffraction. The addition of SCPWs reduced the porosity and increased the compressive strength of the MKPC specimens. Struvite-K crystals were well-synthesized, and no additional crystal phase was formed. After thermal cycling and after immersion, MKPC specimens with 50 wt% SCPWs satisfied the waste-acceptance criteria (WAC) for compressive strength. Semi-dynamic leaching tests were performed using the ANS 16.1 method; the leachability indices of Cs, Co, and Sr were 11.45, 17.63, and 15.66, respectively, which also satisfy the WAC. Thus, MKPCs can provide stable matrices to immobilize radioactive concrete wastes generated by the decommissioning of nuclear power plants.

Nanocrystalline and Ultrafine Grained Materials by Mechanical Alloying

  • Wang, Erde;Hu, Lianxi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.829-830
    • /
    • 2006
  • Recent research at Harbin Institute of Technology on the synthesis of nanocrystalline and untrafine grained materials by mechanical alloying/milling is reviewed. Examples of the materials include aluminum alloy, copper alloy, magnesium-based hydrogen storage material, and $Nd_2Fe_{14}B/{\alpha}-Fe$ magnetic nanocomposite. Details of the processes of mechanical alloying and consolidation of the mechanically alloyed nanocrystalline powder materials are presented. The microstructure characteristics and properties of the synthesized materials are addressed.

  • PDF