Browse > Article
http://dx.doi.org/10.1016/j.net.2021.01.005

Magnesium potassium phosphate cements to immobilize radioactive concrete wastes generated by decommissioning of nuclear power plants  

Pyo, Jae-Young (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
Um, Wooyong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
Heo, Jong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
Publication Information
Nuclear Engineering and Technology / v.53, no.7, 2021 , pp. 2261-2267 More about this Journal
Abstract
This paper evaluates the efficacy of magnesium potassium phosphate cements (MKPCs) as waste forms for the solidification of radioactive concrete powder wastes produced by the decommissioning of nuclear power plants. MKPC specimens that contained up to 50 wt% of simulated concrete powder wastes (SCPWs) were evaluated. We measured the porosity and compressive strength of the MKPC specimens, observing them using scanning electron microscopy and X-ray diffraction. The addition of SCPWs reduced the porosity and increased the compressive strength of the MKPC specimens. Struvite-K crystals were well-synthesized, and no additional crystal phase was formed. After thermal cycling and after immersion, MKPC specimens with 50 wt% SCPWs satisfied the waste-acceptance criteria (WAC) for compressive strength. Semi-dynamic leaching tests were performed using the ANS 16.1 method; the leachability indices of Cs, Co, and Sr were 11.45, 17.63, and 15.66, respectively, which also satisfy the WAC. Thus, MKPCs can provide stable matrices to immobilize radioactive concrete wastes generated by the decommissioning of nuclear power plants.
Keywords
Magnesium potassium phosphate cements(MKPCs); Waste immobilization; Radioactive concrete wastes; Waste acceptance criteria; Leachability index;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Qiao, C.K. Chau, Z. Li, Property evaluation of magnesium phosphate cement mortar as patch repair material, Construct. Build. Mater. 24 (2010) 695-700, https://doi.org/10.1016/j.conbuildmat.2009.10.039.   DOI
2 G.B. Josephson, J.H. Westsik, R.P. Pires, J. Bickford, M.W. Foote, Engineering-scale Demonstration of DuraLith and Ceramicrete Waste Forms, Pacific Northwest National Lab.(PNNL), 2011, https://doi.org/10.2172/1027183.Richland, WA (United States).
3 M. Le Rouzic, T. Chaussadent, L. Stefan, M. Saillio, On the influence of Mg/P ratio on the properties and durability of magnesium potassium phosphate cement pastes, Cement Concr. Res. 96 (2017) 27-41, https://doi.org/10.1016/j.cemconres.2017.02.033.   DOI
4 H. Ma, Y. Li, Discussion of the paper "Characterisation of magnesium potassium phosphate cement blended with fly ash and ground granulated blast furnace slag" by L.J. Gardner et al, Cement Concr. Res. 103 (2018) 245-248, https://doi.org/10.1016/j.cemconres.2017.07.013.   DOI
5 ASTM, Test Method for Thermal Cycling of Electroplated Plastics, 1985.
6 M.J. Varas, M.A. De Buergo, R. Fort, Natural cement as the precursor of Portland cement: methodology for its identification, Cement Concr. Res. 35 (2005) 2055-2065, https://doi.org/10.1016/j.cemconres.2004.10.045.   DOI
7 P. Hou, R. Zhang, X. Cheng, Case study of the gradient features of in situ concrete, Case Stud. Constr. Mater. 1 (2014) 154-163, https://doi.org/10.1016/j.cscm.2014.08.003.   DOI
8 E. Soudee, J. Pera, Influence of magnesia surface on the setting time of magnesia-phosphate cement, Cement Concr. Res. 32 (2002) 153-157, https://doi.org/10.1016/S0008-8846(01)00647-0.   DOI
9 K. De Weerdt, M. Ben Haha, G. Le Saout, K.O. Kjellsen, H. Justnes, B. Lothenbach, Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash, Cement Concr. Res. 41 (2011) 279-291, https://doi.org/10.1016/j.cemconres.2010.11.014.   DOI
10 W. Zhu, J.J. Hughes, N. Bicanic, C.J. Pearce, Nanoindentation mapping of mechanical properties of cement paste and natural rocks, Mater. Char. 58 (2007) 1189-1198, https://doi.org/10.1016/j.matchar.2007.05.018.   DOI
11 H. Ma, B. Xu, J. Liu, H. Pei, Z. Li, Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste, Mater. Des. 64 (2014) 497-502, https://doi.org/10.1016/j.matdes.2014.07.073.   DOI
12 I. Buj, J. Torras, D. Casellas, M. Rovira, J. de Pablo, Effect of heavy metals and water content on the strength of magnesium phosphate cements, J. Hazard Mater. 170 (2009) 345-350, https://doi.org/10.1016/j.jhazmat.2009.04.091.   DOI
13 S. V Mattigod, J.H. Westsik, C.-W. Chung, M.J. Lindberg, K.E. Parker, Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith, Pacific Northwest National Lab.(PNNL), 2011, https://doi.org/10.2172/1027185. Richland, WA (United States).
14 A.J. Wang, J. Zhang, J.M. Li, A.B. Ma, L.T. Liu, Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics, Mater. Sci. Eng. C 33 (2013) 2508-2512, https://doi.org/10.1016/j.msec.2013.02.014.   DOI
15 H. Dong, P. Gao, G. Ye, Characterization and comparison of capillary pore structures of digital cement pastes, Mater. Struct. Constr. (2017), https://doi.org/10.1617/s11527-017-1023-9.   DOI
16 H. Ma, B. Xu, Potential to design magnesium potassium phosphate cement paste based on an optimal magnesia-to-phosphate ratio, Mater. Des. 118 (2017) 81-88, https://doi.org/10.1016/j.matdes.2017.01.012.   DOI
17 D. Singh, R. Ganga, J. Gaviria, Y. Yusufoglu, Secondary Waste Form Testing : Ceramicrete Phosphate Bonded ceramics., ANL-11/16, Argonne Natl. Labratory, 2011, https://doi.org/10.2172/1020703.
18 R. Kumar, B. Bhattacharjee, Porosity, pore size distribution and in situ strength of concrete, Cement Concr. Res. (2003), https://doi.org/10.1016/S0008-8846(02)00942-0.   DOI
19 A.S. Wagh, Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications, second ed., 2016, https://doi.org/10.1016/B978-0-08-044505-2.X5000-5. Amsterdam.
20 A.N. Nikolaev, O.K. Karlina, A.Y. Yurchenko, Y.V. Karlin, Assessment of 137Cs decontamination of concrete by the reagent method, At. Energy. 112 (2012) 57-62, https://doi.org/10.1007/s10512-012-9524-7.   DOI
21 L.J. Gardner, S.A. Bernal, S.A. Walling, C.L. Corkhill, J.L. Provis, N.C. Hyatt, Response to the discussion by Hongyan Ma and Ying Li of the paper "Characterization of magnesium potassium phosphate cement blended with fly ash and ground granulated blast furnace slag, Cement Concr. Res. 103 (2018) 249-253, https://doi.org/10.1016/j.cemconres.2017.07.011.   DOI
22 P. Chindaprasirt, C. Jaturapitakkul, T. Sinsiri, Effect of fly ash fineness on microstructure of blended cement paste, Construct. Build. Mater. 21 (2007) 1534-1541, https://doi.org/10.1016/j.conbuildmat.2005.12.024.   DOI
23 L.J. Gardner, S.A. Bernal, S.A. Walling, C.L. Corkhill, J.L. Provis, N.C. Hyatt, Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag, Cement Concr. Res. 74 (2015) 78-87, https://doi.org/10.1016/j.cemconres.2015.01.015.   DOI
24 Q. Yang, B. Zhu, X. Wu, Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete, Mater. Struct. 33 (2000) 229-234, https://doi.org/10.1007/bf02479332.   DOI
25 D. Singh, V.R. Mandalika, S.J. Parulekar, A.S. Wagh, Magnesium potassium phosphate ceramic for 99Tc immobilization, J. Nucl. Mater. 348 (2006) 272-282, https://doi.org/10.1016/j.jnucmat.2005.09.026.   DOI
26 A.S. Wagh, R. Strain, S.Y. Jeong, D. Reed, T. Krause, D. Singh, Stabilization of Rocky Flats Pu-contaminated ash within chemically bonded phosphate ceramics, J. Nucl. Mater. 265 (1999) 295-307, https://doi.org/10.1016/S0022-3115(98)00650-3.   DOI
27 D. Chartier, J. Sanchez-Canet, P. Antonucci, S. Esnouf, J.P. Renault, O. Farcy, D. Lambertin, S. Parraud, H. Lamotte, C.C.D. Coumes, Behaviour of magnesium phosphate cement-based materials under gamma and alpha irradiation, J. Nucl. Mater. (2020), https://doi.org/10.1016/j.jnucmat.2020.152411.   DOI
28 J.J. Kim, D.J. Kim, S.T. Kang, J.H. Lee, Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant, Nucl. Eng. Des. 252 (2012) 1-10, https://doi.org/10.1016/j.nucengdes.2012.07.004.   DOI
29 I. Buj, J. Torras, M. Rovira, J. de Pablo, Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals, J. Hazard Mater. 175 (2010) 789-794, https://doi.org/10.1016/j.jhazmat.2009.10.077.   DOI
30 S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, B.F. Myasoedov, Magnesium Potassium Phosphate Compound for Radioactive Waste Immobilization: Phase Composition, Structure, and Physicochemical and Hydrolytic Durability, Radiochemistry, 2018, https://doi.org/10.1134/S1066362218010125.   DOI
31 H. Ma, B. Xu, Z. Li, Magnesium potassium phosphate cement paste: degree of reaction, porosity and pore structure, Cement Concr. Res. 65 (2014) 96-104, https://doi.org/10.1016/j.cemconres.2014.07.012.   DOI
32 ANS, Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Procedure, 2009.
33 A.S. Wagh, S.Y. Sayenko, V.A. Shkuropatenko, R.V. Tarasov, M.P. Dykiy, Y.O. Svitlychniy, V.D. Virych, Y.A. Ulybkina, Experimental study on cesium immobilization in struvite structures, J. Hazard Mater. 302 (2016) 241-249, https://doi.org/10.1016/j.jhazmat.2015.09.049.   DOI
34 M. Hashish, D.C. Echert, Abrasive-waterjet deep kerfing and waterjet surface cleaning for nuclear facilities, J. Eng. Ind. 111 (1989) 269-281, https://doi.org/10.1115/1.3188759.   DOI
35 IAEA, Nuclear Power Reactors in the World, 2019. Vienna, https://www.iaea.org/publications/13552/nuclear-power-reactors-in-the-worlddf.
36 IAEA, Radiological Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes, 1998. Vienna, http://www-pub.iaea.org/MTCD/Publications/PDF/TRS389_scr.pdf.
37 K.S. Dickerson, M.J. Wilson-Nichols, M.I. Morris, Contaminated Concrete: Occurrence and Emerging Technologies for DOE Decontamination, Oak Ridge National Lab., 1995. No. DOE/ORO-2034.
38 M. Castellote, C. Andrade, C. Alonso, Nondestructive decontamination of mortar and concrete by electro-kinetic methods: application to the extraction of radioactive heavy metals, Environ. Sci. Technol. 36 (2002) 2256-2261, https://doi.org/10.1021/es015683c.   DOI
39 M.J. Angus, S.R. Hunter, J. Ketchen, Classification of contaminated and neutron-activated concretes from nuclear facilities prior to their decontamination or decommissioning, Waste Manag. 90 (1990). CONF-900210-VOL.2.
40 NEA, The NEA Co-operative Programe on Decommissioning, Decontamination and Demolition of Concrete Structures, 2011.
41 D. Gurau, R. Deju, The use of chemical gel for decontamination during decommissioning of nuclear facilities, Radiat. Phys. Chem. 106 (2015) 371-375, https://doi.org/10.1016/j.radphyschem.2014.08.022.   DOI
42 M. Kinno, K.I. Kimura, T. Nakamura, Raw materials for low-activation concrete neutron shields, J. Nucl. Sci. Technol. 39 (2002) 1275-1280, https://doi.org/10.1080/18811248.2002.9715321.   DOI
43 B.E.I. Abdelrazig, J.H. Sharp, B. El-Jazairi, The microstructure and mechanical properties of mortars made from magnesia-phosphate cement, Cement Concr. Res. 19 (1989) 247-258, https://doi.org/10.1016/0008-8846(89)90089-6.   DOI
44 P.V. Samuleev, W.S. Andrews, K.A.M. Creber, P. Azmi, D. Velicogna, W. Kuang, K. Volchek, Decontamination of radionuclides on construction materials, J. Radioanal. Nucl. Chem. 296 (2013) 811-815, https://doi.org/10.1007/s10967-012-2146-7.   DOI
45 S.E. Vinokurov, Y.M. Kulyako, O.M. Slyuntchev, S.I. Rovny, B.F. Myasoedov, Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices, J. Nucl. Mater. 385 (2009) 189-192, https://doi.org/10.1016/j.jnucmat.2008.09.053.   DOI
46 B.Y. Min, W.K. Choi, K.W. Lee, Separation of clean aggregates from contaminated concrete waste by thermal and mechanical treatment, Ann. Nucl. Energy 37 (2010) 16-21, https://doi.org/10.1016/j.anucene.2009.10.010.   DOI
47 D.A. Burbank, Waste Acceptance Criteria for the Immobilized Low Activity Waste (ILAW) Disposal Facility, 2002, https://doi.org/10.2172/807982. United States.
48 D.P. Bentz, Influence of water-to-cement ratio on hydration kinetics: simple models based on spatial considerations, Cement Concr. Res. (2006), https://doi.org/10.1016/j.cemconres.2005.04.014.   DOI
49 S. Diamond, A critical comparison of mercury porosimetry and capillary condensation pore size distributions of portland cement pastes, Cement Concr. Res. (1971), https://doi.org/10.1016/0008-8846(71)90058-5.   DOI
50 L. Alarcon-Ruiz, G. Platret, E. Massieu, A. Ehrlacher, The use of thermal analysis in assessing the effect of temperature on a cement paste, Cement Concr. Res. 35 (2005) 609-613, https://doi.org/10.1016/j.cemconres.2004.06.015.   DOI
51 A. Cregut, J. Roger, Inventory of information for the identification of guiding principles in the decommissioning of nuclear installations, Euratom. No. EUR13 (1991) 90.