• 제목/요약/키워드: magnesium oxide

검색결과 253건 처리시간 0.019초

비행시간형 직충돌 이온산란 분광법을 사용한 TiC(001)면에 성장된 MgO막의 구조해석 (Structure of epitaxial MgO layers on TiC(001) studied by time-of-flight impact-collision ion scattering spectroscopy)

  • 황연;소다 류타로
    • 한국진공학회지
    • /
    • 제6권3호
    • /
    • pp.181-186
    • /
    • 1997
  • TiC(001) 면위에 Mg금속을 증착시킨 후 상온에서 산소를 노출시키는 방법으로 hetero-epitaxial MgO막을 성장시켰으며, 성장된 MgO epitaxial막의 구조를 비행시간형 직 충돌 이온산란분광법을 사용하여 해석하였다. MgO막은 산화 직후 무질서한 배열을 갖으나, 약 $300^{\circ}C$의 가열에 의해서 1$\times$1구조로 전환된다. TiC(001) 위에 성장된 MgO막은 다음과 같은 구조를 갖고 있음이 밝혀졌다. Mg 및 O원자는 TiC의 on-top site에 위치하고, 면내방 향의 격자상수는 TiC의 격자상수와 일치하며, MgO막의 대부분은 2층 이내의 원자층으로 구성되어 있다.

  • PDF

산소 이온 빔 보조 증착된 AC PDP용 MgO 보호막의 특성 연구 (Structural and Discharge Characteristics of MgO Deposited by Oxygen-Ion-Beam-Assisted Deposition in AC PDP)

  • 이조휘;김광호;안민형;홍성재;임승혁;권상직
    • 한국진공학회지
    • /
    • 제16권5호
    • /
    • pp.338-342
    • /
    • 2007
  • MgO는 플라즈마 디스플레이 패널 (Plasma Display Panel, PDP)의 보호막으로 널리 쓰이고 있다. 본 실험에서는 산소 이온 빔을 이용하여 증착된 MgO 보호막의 특성을 조사하였다. MgO 증착 시 보조 산소 이온 빔의 에너지를 변화시킴에 따라 MgO 보호막의 특성과 PDP 패널 발광특성에 미치는 영향을 분석하였다. 본 연구에서는 산소 이온 에너지가 300 eV 일 때 소자의 방전개시전압이 가장 낮게 나타났고, 발광 휘도 및 발광 효율은 가장 높게 나타났다. 또한 산소 이온 빔의 조사에너지에 따라 MgO 박막의 결정성 및 표면조도가 크게 영향을 받는 것을 확인할 수 있었다. 산소 이온 빔 보조 증착 방법을 이용하여 패널의 발광 휘도와 발광 효율 등 발광특성을 개선하였다.

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

마갈드레이트의 합성조건과 그 현탁액의 유동학적 특성 (Synthesis Conditions of Magaldrate and Rheological Characteristics of its Aqueous Suspensions)

  • 신화우;최광식
    • 약학회지
    • /
    • 제40권1호
    • /
    • pp.25-35
    • /
    • 1996
  • Magaldrate. an antiacid was synthesized by reacting magnesium oxide, aluminum sulfate, and dried aluminum hydroxide gel. The optimum synthesis conditions based on the yield of t he product were established by applying Box-Wilson experimental design. It was found that the optimum synthesis conditions of Magaldrate were as follows: Reaction temperature; 61~$85{\circ}C$, concentration of two reactants. Mgo and $Al(OH)_3$: 16~19.8%, molar concentration ratio of two reactants, [MgO]/[$Al(OH)_3$]; 4.2~5.0, temperature of washing water; 36~$41^{\circ}C$ and drying temperature of the product: 76~$80^{\circ}C$. Magaldrate was synthesized under the optimum synthesis conditions and identified by analyzing the chemical composition, and by differential scanning calorimetry and X-ray diffraction method. The Magaldrate sample synthesis under these conditions was used to prepare 15.6% Magaldrate original suspension which was utilized to make 13% Magaldrate suspension dispered in various concentrations of eight types of suspending agents. The acid-neutralizing capacity of 13% Magaldrate suspension dispersed in 0.25% suspending agents was examined by Rosset-Rice method. The maximum pH was reached within 1 minute in all suspension tested, and duration maintained between pH 3~5 was decreased in the order of Na alginate Na silicate(meta) Veegum HV pectin agar>Na>CMC>xanthan gum>bentonite. It was found that the hysteresis loop area was increased with temperature in the case of Riopan Plus and the addition of agar, whereas the area was decreased with temperature in the case of the addition of Na alginate and xanthan gum. 13% Magaldrate suspension tends to sediment by the addition of bentonite.

  • PDF

활성탄소 입도에 따른 산화마그네슘 경화체의 공극특성과 흡착성능 평가 (Pore Characterisitics and Adsorption Performance Evaluation of Magnesium Oxide Matrix by Active Carbon Particle Size)

  • 편수정;이상수
    • 한국건축시공학회지
    • /
    • 제18권1호
    • /
    • pp.59-65
    • /
    • 2018
  • 라돈가스는 암석이나 토양 등에 존재하는 자연 방사성 물질인 우라늄이 붕괴할 때 발생하는 무색, 무취, 무미의 가스이다. 인체가 연간 노출되는 방사선의 85%는 자연 방사선에 의한 것이고, 그 중 50%가 라돈가스이다. 미국 환경보호청(EPA)의 조사결과에 의하면, 라돈가스에 장시간 노출될 경우 흡연자는 1,000명 중 62명, 비흡연자는 1,000명 중 7명이 폐암 발병률에 노출된다. 이러한 라돈가스의 위해성을 저감하고자 활성탄소를 사용하여 경화체를 제작하여 그에 대한 공극 특성과 라돈가스 저감 특성에 대한 실험을 진행하였다. 활성탄소를 활용하였을 경우, 측정기간이 길어질수록 라돈가스 농도는 급격한 저감과 그래프 상의 변화를 확인할 수 있었다. 또한 활성탄소의 재료적 특성 중 하나인 공극 분포와 미세공 특성을 파악할 수 있다.

안트라사이트를 활용한 산화마그네슘 보드의 실내 공기질 중 라돈가스 농도 저감 평가 (Evaluation of Decreasing Concentration of Radon Gas for Indoor Air Quality with Magnesium Oxide Board using Anthracite)

  • 편수정;임현웅;이상수
    • 한국건축시공학회지
    • /
    • 제18권1호
    • /
    • pp.9-15
    • /
    • 2018
  • 지구상에 존재하는 라돈가스는 바위, 토양, 건축자재 등에서 방출되는 1급 발암물질로 유일한 기체상으로 존재하고 있다. 공기에 비해 무겁고 분자량이 커 하부에 가라앉아 있지만 이동성이 크다. 라돈가스는 특성상 실외에서 대기에 확산되지만 밀폐되고 환기가 어려운 실내공간의 농도는 수천 배까지 증가할 수 있다. 이러한 라돈가스의 위해성을 해결하기 위해 안트라사이트를 활용한 경화체의 라돈가스 저감 특성과 더불어 실내 마감재로 사용할 수 있는 기초 성능평가를 진행하였다. 기존 여과재로 사용된 안트라사이트를 사용하여 경화체를 제작하였으며, 기존 실내에서 사용된 건축자재 중 라돈을 방출하는 석고보드를 대체할 수 있는 시험을 진행하였다. 결합재로는 경소 마그네시아를 사용하였고, 경소마그네시아의 경화를 위해 염화마그네슘을 사용하였다. 흡착재로 사용된 안트라사이트의 치환율은 0, 10, 20, 30, 40, 50 (%)로 총 6수준으로 진행하였으며,W/B는 40%로 고정하였다. 시험항목은 휨파괴 하중, 열전도율, 라돈가스 농도를 진행하였으며, 양생조건은 항온항습 양생(습도 $80{\pm}5%$, 온도 $20{\pm}2^{\circ}C$)으로 진행하였다.

Spinel Pigment의 생성반응에 관한 연구 (A Study on the Formation of Spinel Pigment(Green Pigment based on Magnesium-Chrome))

  • 이응상;박철원;황성연
    • 한국세라믹학회지
    • /
    • 제12권1호
    • /
    • pp.29-36
    • /
    • 1975
  • This study was conducted to research the formation, color development and application for colored glazes of the spinel solid solutions of the green pigment. On specimens prepared by calcining the oxide and basic carbonate mixture at 1250℃ for 1.5 hour, the x-ray analysis, measurement of reflectance and the test of their stabiality as a glaze pigment were carried out. The results are summarized as follows 1) Each sample is composed of single spinel and not of mixture of spinel. 2) Formation of continuous soild solution, except for a few instances, pertaining to Vegard's law was confirmed by means of the x-ray analysis. 3) The more difference between absorption and reflectance lies, the lighter colors are. When the absorption occurs at the high-reflectance, the excitation purity becomes low. On the contrary when the absorption takes place at the low-reflectance, the excitation purity becomes low. On the contrary when the absorption takes place at the low-reflectance, the excitation purity is higher. 4) Colors obtained in the CdO-MgO-Cr2O3-Al2O3 system, as the amounts of Al3+ increased, change from green through brown to pink, and the absorption peak shifts towards violet region. 5) An increase in Co2+ in the CoO-MgO-Cr2O3-Al2O3 system, changes the color from blue green to dark blue. The excitation purity is higher, and the absorption peak shifts toward regions. 6) Colors are green in the NiO-MgO-Cr2O3 and CdO-MgO-Cr2O3 systems in general, but in the ZnO-MgO-Cr2O3 system brillant hue is not obtained. 70 According to the results of the colored glaze test, the spinels turn outto be stable as brilliant glaze pigment in the calcium-magnesia glaze.

  • PDF

(1-x)MgxSr$TiO_3$(x=0.03~0.04) 세라믹스의 마이크로파 유전특성 (Microwave Dielectric Properties of the (1-x)MgxSr$TiO_3$(x=0.03~0.04) ceramics)

  • 최의선;이문기;류기원;배선기;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.547-550
    • /
    • 2000
  • The (1-x)MgTiO$_3$-xSrTiO$_3$(x=0.03~0.04) ceramics were fabricated by the conventional mixed oxide method. The sintering temperature and time were 125$0^{\circ}C$~135$0^{\circ}C$, 2hr., respectively. From the X-ray diffraction patterns, it was found that the perovskite SrTiO$_3$ and ilmenite MgTiO$_3$ structures coexisted in the (1-x)MgTiO$_3$-xSrTiO$_3$(x=0.03~0.04) ceramics. The dielectric constant($\varepsilon$$_{r}$) was increased with addition of SrTiO$_3$. The temperature coefficient of resonant frequency($\tau$$_{f}$) was gradually varied from negative value to the positive value with increasing the SrTiO$_3$. The negative temperature coefficient of resonant frequency of the magnesium titanate was adjusted to near zero at x=0.036, where the dielectric constant, quality factor, and $\tau$$_{f}$ were 20.65, 95120, and +1.3ppm/$^{\circ}C$, respectively. The temperature stability of qualify factor in (1-x)MgTiO$_3$-xSrTiO$_3$(x=0.03~0.04) ceramics increased as the amount of MgTiO$_3$./TEX>.

  • PDF

Effect of NaOH Concentration on the PEO Film Formation of AZ31 Magnesium Alloy in the Electrolyte Containing Carbonate and Silicate Ions

  • Moon, Sungmo;Kim, Yeajin;Yang, Cheolnam
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.308-314
    • /
    • 2017
  • Anodic film formation behavior of AZ31 Mg alloy was studied as a function of NaOH concentration in 1 M $Na_2CO_3$ + 0.5 M $Na_2SiO_3$ solution under the application of a constant anodic current density, based on the analyses of voltage-time curves, surface appearances and morphologies of the anodically formed PEO (plasma electrolytic oxidation) films. The anodic film formation voltage and its fluctuations became largely lowered with increasing added NaOH concentration in the solution. Two different types of film defects, large size dark spots indented from the original surface and locally extruded white spots, were observed on the PEO-treated surface, depending on the concentration of added NaOH. The large size dark spots appeared only when added NaOH concentration is less than 0.2 M and they seem to result from the local detachments of porous PEO films. The white spots were observed to be very porous and locally extruded and their size became smaller with increasing added NaOH concentration. The white spot defects disappeared completely when more than 0.8 M NaOH is added in the solution. Concludingly it is suggested that the presence of enough concentration of $OH^-$ ions in the carbonate and silicate ion-containing electrolyte can prevent local thickening and/or detachment of the PEO films on the AZ31 Mg alloy surface and lower the PEO film formation voltage less than 70 V.

콘크리트 포장의 급속 보수를 위한 산화마그네슘계열 단면복구재의 성능에 대한 실험적 연구 (Experimental Study on Performance of MgO-based Patching Materials for Rapid Repair of Concrete Pavement)

  • 이현기;안기용;심종성
    • 한국도로학회논문집
    • /
    • 제18권1호
    • /
    • pp.43-55
    • /
    • 2016
  • PURPOSES : This study aims to develop a repair material that can enhance pavement performance, inducing rapid traffic opening through early strength development and fast setting time by utilizing MgO-based patching materials for repairing road pavements. METHODS : To consider the applicability of MgO-based patching materials for repairing domestic road pavements, first, strength development and setting time of the materials were evaluated, based on MgO to $KH_2PO_4$ ratio, water to binder ratio, and addition ratio of retarder (Borax), by which the optimal mixture ratio of the developed material was obtained. To validate the performance of the developed material as a repair material, the strength(compressive strength and bonding strength) and durability (freezing, thawing, and chloride ion penetration resistance) was checked through testing, and its applicability was evaluated. RESULTS : The results showed that when an MgO-based patching material was used, the condensation time was reduced by 80%, and the compressive strength was enhanced by approximately 300%, as compared to existing cement-based repair materials. In addition, it was observed that the strength (compressive strength and bonding strength) and durability (freezing and thawing, and chloride ion penetration resistance) showed an excellent performance that satisfied the regulations. CONCLUSIONS : The results imply that an emergent repair/restoration could be covered by a rapid-hardening cement to meet the traffic limitation (i.e. the traffic restriction is only several hours for repair treatment). Furthermore, MgO-based patching materials can improve bonding strength and durability compared to existing repair materials.