• Title/Summary/Keyword: magnesium alloys

Search Result 290, Processing Time 0.023 seconds

Effect of Heat Treatment on the Microstructure and Damping Capacity of Hot Rolled Magnesium Alloys (열간 압연 한 Mg합금의 미세조직과 감쇠능에 미치는 열처리의 영향)

  • Lee, Gyu-Hyun;Kim, Kwon-Hoo;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.66-71
    • /
    • 2014
  • In this study, effect of heat treatment on the microstructure and damping capacity of hot rolled magnesium alloys was investigated. The microstructure of hot rolled magnesium consisted of dendrite structure and $Mg_{17}Al_{12}$ compounds precipitated along the grain boundry. The dendrite structure was dissipated and $Mg_{17}Al_{12}$ compounds was decomposed by annealing treatment, and then they dissolved in ${\alpha}-Mg$. With an increasing the annealing temperature and time, damping capacity was slowly increased by the growth of grain size and decreasing of defects induced by hot rolling. Two kinds of magnesium alloys AZ 31 and AZ 61 after annealing showed no difference in damping capacity.

Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet (마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

Corrosion Behavior of AZ91 Magnesium Alloy (AZ91 마그네슘합금의 부식거동)

  • Yim, Chang Dong;Kim, Young Min;Park, Sung Hyuk;You, Bong Sun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.619-627
    • /
    • 2012
  • One of the barriers limiting wide applications of magnesium alloys to various industries is their poor corrosion resistance. The corrosion properties of AZ91 magnesium alloy, which is the most popular magnesium casting alloy, are affected by microstructural and environmental factors. The corrosion properties of AZ91 magnesium alloy are affected by the corrosion properties of ${\alpha}-Mg$ and ${\beta}$ phases, the volume fraction and distribution of ${\beta}$ phase and area ratio of ${\alpha}-Mg/{\beta}$ phases. The corrosion properties of AZ91 magnesium alloy under various environments also change according to the passivity of films and types of corrosion products formed on its surface. The corrosion resistance of the magnesium alloys can be improved by microstructural control through the addition of alloying elements and optimization of the production process.

Fatigue Properties of Fine Grained Magnesium Alloys after Severe Plastic Deformation

  • Chung Chin-Sung;Chun Duk-Kyu;Kim Ho-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1441-1448
    • /
    • 2005
  • Fine grained AZ31 and AZ61 magnesium alloys produced by equal channel angular pressing (ECAP) were tested for investigating tensile and fatigue properties, including microstructure, monotonic tensile flow, fatigue life and crack growth rate. For the two alloys, the yield stress of the ECAPed sample was lower than that of the unECAPed (=as received) sample, because of the fact that the softening effect due to texture anisotropy overwhelmed the strengthening effect due to grain refinement. Grain refinement of the AZ31 and AZ61 alloys through ECAP was found not to be significantly effective in increasing fatigue strength.

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

Microstructural Control of Mg-Zn Alloys by Rapid Solidification and Elemental Addition (급냉응고와 원소첨가에 의한 Mg-Zn합금의 미세조직 제어)

  • Kim, Yeon-Wook;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.283-288
    • /
    • 1998
  • Interest in rapid solidification of magnesium alloys stems from the fact that conventional ingot metallurgy alloys exhibit poor strength, ductility, and corrosion resistance. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-Zn alloys have been produced as continuous strips by melt overflow technique. In order to evaluate the influence of additional elements on the grain refinement and mechanical properties, Th and Zr were added in rapidly solidified Mg-5wt%Zn alloy. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate and the additional elements. The tremendous increase in hardness of Mg-Zn base alloys was mainly due to the refinement of the grain structure by the effect of rapid solidification and alloying elements. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification processing of magnesium alloys emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

Preparation of corrosion-resistive thin films by ion plating method and their corrosion protection mechanism (이온 플레이팅법에 의한 내식 박막의 제작과 부식방식 메카니즘)

  • Lee, K.H.;Bae, I.Y.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.285-286
    • /
    • 2006
  • Magnesium is the lightest of all the structural metals having density of 1.74. It is approximately 2/3 lighter than aluminium, l/4 lighter than titanium alloy and 1/5 lighter than iron. Among the light-weight alloys, magnesium and its alloys show a good possibility for high performance aerospace and automotive applications, however the widespread use of magnesium alloys has been limited mainly by its poor oxidation and corrosion resistance. In this work, corrosion-resistive thin films were prepared onto the magnesium alloy substrate(AZ91D) by environmental friendly coating technique, ion plating method. And their corrosion protection mechanism were analyzed.

  • PDF

New Surface Treatment Process in Magnesium Alloy for Wheelchair

  • Han, Byung-Kuk
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.112-115
    • /
    • 2013
  • One of the most important characteristics of Mg alloys is the high ratio of strength to weight. This is why there is a high demand for applications with these alloys in the transportation industries to reduce the fuel consumption and to save energy. In addition, magnesium (and its alloys) is of considerable interest as a structural material, especially in the aerospace and automotive industries thanks to its low density. However, its major drawback is its high sensitivity to corrosion. Therefore, its use requires the application of a surface treatment. This study used a die-casted AZ91D Mg alloyand all the samples were annealed (in $120^{\circ}C$). The surface microstructure and phase distribution in thin-walled AZ91D magnesium components cast on a hot-chamber die-casting machine were investigated by optical microscopy and scanning electron microscopy. The reflectance differences in the bulk state comparison with the annealing state are caused by hydrogenation presence of the Mg layer under an oxidation surface layer.

A Study of Technical Adapting on Injection Molding for Magnesium Alloy (마그네슘합금 사출성형의 기술적용에 관한 연구)

  • 강태호;김인관;최준영;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.833-836
    • /
    • 1997
  • Magnesium alloys are one of light weight material. Strength and stiffness of Magnesium alloys are enough to use for commercial product. Demand for strong, lightweight parts several computer and electronics have driven much of Magnesium injection molding's growth so far. And it is eighth most abundant resource on earth. In electronic device, electromagnetic interface and electrostatic discharge can affect performance. Magnesium injection molding is similar to normal plastic injection molding process. But some process condition is different. Especially injection speed and process temperature are so differs from other injection molding system. It just start for make something. But Magnesium injection molding is one of best alternate process for producing metal alloy part.

  • PDF

A Study on Warm Forming Technology of Car Body Reinforced Dash Using Magnesium Alloy Sheet (마그네슘 합금 판재를 활용한 차체 Reinforced Dash 부품 온간성형 공정 연구)

  • Park, Dong Hwan;Tak, Yun Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.519-524
    • /
    • 2014
  • The use of light weight magnesium alloy offers significant potential towards improvement of the automotive fuel efficiency. However, the application of formed magnesium alloy components in auto-body structures is restricted due to the low formability at room temperature and lack of knowledge for processing magnesium alloys at elevated temperatures. In this study, a warm tensile test of magnesium alloys was performed to measure tensile strength and elongation. An improvement in formability was confirmed at increased temperatures above about $250^{\circ}C$. Car body warm forming technology was conducted for forming forming reinforced dash components of the magnesium alloy AZ31B sheet at elevated temperatures.