• Title/Summary/Keyword: magmatic foliation

Search Result 10, Processing Time 0.022 seconds

Spatial Compositional Variations and their Origins in the Buseok Pluton, Yeongju Batholith (영주저반의 부석심성암체 내에서 공간적 조성변화와 그 성인)

  • 황상구
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.147-163
    • /
    • 2000
  • The Buseok pluton in the Yeongju Batholith is a comagmatic plutonic rocks which haveconcentrically compositional zoning. The lithofacies of the Buseok pluton comprise hornblende biotite tonalite in the southern part of the pluton, porphyritic and equigranular biotite granodiorite in the northern part and biotite granite in the north-central part. The compositional variations change gradually with continuity both within and between the lithofacies. The concentrically zoned pattern is relatively mafic rocks composed of high-temperature mineral assemblages in margin of the southern part, passing inward and northward gradually to more felsic rock in core of the north-central part. Changes in the textures and microstructures, as well as in the mineral content, take place between rock types of the plutons. Darker colored, generally coarse-grained, well foliated tonalite pass inward to light colored, coarse-grained, poorly foliated granodiorite, and finally give way to lighter colored, medium-grained, nearly nonfoliated granite. The foliation are best developed in the marginal part of the tonalite. Here, the regional myolitic foliation in the tonalite is steep northward and parallels to its southeastern contact with the country rock, but the magmatic foliation from disc-shaped mafic microgranitoid enclaves is subvertical and parallels the contacts with the country rock. As the tonalite approaches biotite granite in composition, the foliation is indistinct. Modal and chemical data for the pluton show quantitative compositional variation from the margin of the southern part to the core of the north-central part. Quartz and K-feldspar increase toward the core of the pluton, whereas hornblende, biotite and color index decrease. /Abundances of $SiO_2$and $K_2O$$_2$O increase toward the core according to the variation in quartz and K-feldspar, whereas those of MnO, CaO, $TiO_2$, $Fe_2O_3$, MgO and $P_2O_5$ decrease corresponding to the variation in mafic and accessaries. The compositional zonation resulted from fractional crystallization involving downward settling of earlier crystals, accompanied by upward movement of melt and volatiles, and followed by accessary marginal accretion of crystalline material in the magma to the marginal part. Although a little crustal contamination by the wall rock is recognized from the isotope data, the contamination is not only dominated over but also appropriate for forming the compositional variation in the pluton.

  • PDF

Petrographic and Magnetic Fabric Investigation of the Tadaout-Tizi n'Rsas Dyke Swarms in the Eastern Anti-Atlas, Morocco

  • Daoud, Mustapha Ait;Essalhi, Mourad;Essalhi, Abdelhafid;Toummite, Abdeslam
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.629-647
    • /
    • 2021
  • Located in the eastern part of the Anti-Atlas, the Tafilalet region shows numerous dykes and sills that crosscut the Paleozoic terrains. The magmatic structures (dykes and sills) of the Tadaout-Tizi n'Rsas (TTR) anticline is studied here, it located neighboring the main branch of the Anti-Atlas Major Fault (AAMF), known in this location as the Oumejrane-Taouz Fault (OJTF). The N20° to N60° trending dykes crosscut the Paleozoic formations (Ordovician to Devonian), whereas sills are injected into the Silurian and Devonian ones. The dyke swarms of TTR have been studied using the Anisotropy of Magnetic Susceptibility (AMS), petrographic study and structural analyses. The petrographic study of the TTR doleritic dykes shows a dominance of plagioclase feldspars, alkali feldspars, amphiboles, pyroxenes and biotite. The dykes contain also mesotype (natrolite), sphene (titanite), apatite, actinolite and pegmatitic enclaves of biotite, orthoclase feldspars and pelites. Concerning field works, they show the deformation of TTR dykes by the Variscan tectonics events, it is marked by the presence of displacements (strike-slip faults) and cleavages. The Magnetic Susceptibility (MS) measured on magmatic specimens show the dominance of ferromagnetic and paramagnetic minerals. The high values of MS in the dykes are due to the presence of hematite, amphibole, pyroxene and biotite. In addition their magnetic fabric, determined by our AMS study, allows us to reconstitute the tectonic event which affected the magmatic bodies. This one is characterized by a magnetic foliation and a NNW-trending lineation that reflect the Variscan shortening orientation.

Geochronology and Petrogenetic processes of the so-called Hongjesa granite in the Seogpo-Deogku Area (석포(石浦)-덕구간(德邱間)에 분포(分布)하는 소위(所謂) 홍제사화강암(洪濟寺花崗岩)의 지질연대(地質年代)와 생성과정(生成過程)에 대(對)한 硏究(연구))

  • Kim, Yong Jun;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.16 no.3
    • /
    • pp.163-221
    • /
    • 1983
  • Main aspects of this study are to clarify geochronology and petrogenetic processes of the so-called Hongjesa granite, which is a member of various intrusive rocks exposed in the northeastern part of the Ryongnam Massif, one of the Precambrian basements of South Korea. In this study, the Hongjesa grainte is divided into four rock units based on the geologic age, mineralogical and chemical constituents, and texture: the Precambrian Hongjesa granite gneiss (Hongjesa granite Proper) and leucogranite gneiss, the Paleozoic gnessic two mica granite, and the Jurassic muscovite granite. The Hongjesa granite gneiss is identified by its grayish color, slight foliation, and porphyroblastic texture. The leucogranite gneiss is distinct by its light gray color, sand medium to coarse grained texture. The gneissic two mica granite is distinguished from others by its strong foliation, containing gray-colored feldspar phenocrysts with biotite and muscovite in varying amounts. The muscovite granite occurs as a small stock containing feldspar phenocrysts along margin of the stock. These granitic rocks vary widely in composition, reflecting the facts that they partly include highly metamorphosed xenolith and schlierens as relics of magmatic and anatectic processes. In particular, grayish porphyroblasts of microcline perthite is characteristic of the Hongjesa granite gneiss, whereas epidote and garnet occur in both the Hongjesa granite gneiss and leucogranite gneiss. These minerals are considered to be formed by potassic metasomatism and contamination of highly metamorphosed rocks deeply buried under the level of the Hongjesa granite emplacement. The individual synchronous granitic rocks plotted on Harker diagram show mostly similar trends to the Daly's values. The plots of the Hongjesa granite gneiss and gneissic two mica granite concentrate near the end part of the calc-alkalic rock series on the AMF diagrams, whereas those of the leucogranite gneiss and muscovite granite indicate the trend of the Skaergaard pluton. These granitic rocks plotted on a Q-Ab-Or diagram (petrogeny's residua system) fall well outside the trough of the system. This can be attributed to the potassic matasomatism of these rocks. On the ACF diagram, these rocks appear to be dominantly I-type prevailing over S-type. The K-Ar ages, obtained from a total of 7 samples of the leucogranite gneiss, gneissic two mica granite, muscovite granite, porphyritic alkali granite, and rhyolitic rock, in addition to the Rb/Sr ages of the Hongjesa granite gneiss by previous workers, permit the rock units to be arranged in the following chronological order: The middle Proterozoic Hongjesa granite gneiss (1714-1825 m.y.), the upper proterozoic leucogranite gneiss (875-880 m. y.), the middle Paleozoic gneissic two mica granite (384 m. y.) the upper Jurassic muscovite granite (147 m. y.), the Eocene alkali granite (52 m. y.), and the Eocene rhyolitic rock (45 m. y.). From the facts and data mentioned above, it is concluded that the so-called Hongjesa granite is not a single granitic mass but is further subdivided into the four rock units. The Hongjesa granite gneis, leucogranite gneiss, and gneissic two mica granite are postulated to be either magmatic or parautochtonous, intrusive, and the later muscovite granite is to be magmatic in origion.

  • PDF

Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea (산청 회장암복합체의 형성과정과 그 메커니즘)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.431-449
    • /
    • 2015
  • The study area is located in the western part of the Precambrian stock type of Sancheong anorthosite complex, the Jirisan province of the Yeongnam massif, in the southern part of the Korean Peninsula. We perform a detailed field geological investigation on the Sancheong anorthosite complex, and report the characteristics of lithofacies, occurrences, foliations, and research formation process and its mechanism of the Sancheong anorthosite complex. The Sancheong anorthosite complex is classified into massive and foliation types of Sancheong anorthosite (SA), Fe-Ti ore body (FTO), and mafic granulite (MG). Foliations are developed in the Sancheong anorthosite complex except the massif type of SA. The foliation type of SA, FTO, MG foliations are magmatic foliations which were formed in a not fully congealed state of SA from a result of the flow of FTO and MG melts and the kinematic interaction of SA blocks, and were continuously produced in the comagmatic differentiation. The Sancheong anorthosite complex is formed as the following sequence: the massive type of SA (a primary fractional crystallization of parental magmas under high pressure)${\rightarrow}$ the foliation type of SA [a secondary fractional crystallization of the plagioclase-rich crystal mushes (anorthositic magmas) primarily differentiated from parental magmas under low pressure]${\rightarrow}$the FTO (an injection by filter pressing of the residual mafic magmas in the last differentiation stage of anorthositic magmas into the not fully congealed SA)${\rightarrow}$the MG (a solidification of the finally residual mafic magmas). It indicates that the massive and foliation types of SA, the FTO, and the MG were not formed from the intrusion and differentiation of magmas which were different from each other in genesis and age but from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma.

Intrusive Phases and Igneous Pricesses in the Yeongju Batholith (영주저반의 관입상과 화성과정)

  • 황상구
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.669-688
    • /
    • 1999
  • The Yeongju granitoid batholith is a plutonic complex of huge area (1180km2) intruding the metamorphic rocks of the Yeongnam massif. The batholith, which is divided into fivelithofacies, consists of three separate plutons. The oldest Buseok pluton comprises four lithofacies: hornblende biotite tonalite, porphyrotoc biotite granodiorite, equigranular biotite grandiorite and biotite granite. The middle Chunyang pluton has been called as Chunyang granite that ranges in compostion from granodiorite to granite. The youngest Jangsu pluton is intrusions that has lithofacies of two mica granite. The contact between Buseok pluton and the rest two plutons shows obvious intrusive relations, but relation between the Chunyang and the Jangsu pluton is far away, so gives no indication of relative ages. Changes in nextures and micristructures, as well as in the mineral contents, take place between rock types og the plutons. only the Buseok pluton shows faliations of two type: magmatic foliation and regional mylonal foliation. K-Ar age deteminations fall into 171.7$\pm$3.2~162.3$\pm$3.1 Ma in the Buseok pluton, 153.9$\pm$2.9 Ma in the Chunyang pluton and 145.3$\pm$2.7 Ma in the jangsu Pluton. The batholith presents three separate intrusive phases which range in composition from tonalite to granite to granite. Each intrusive phase apperars to have been intruded in a pulse from an underlying, differentiating magma. The petrochemical data showthat three plutons are within the diagnostic range for continental arc orogenic tectonic setting, whereas Jangsu pluton approaches postorogenic setting. The data suggest that three plutons are calc-aclkalline series, and that temporal compositional variations change progerssively from tonalite through grandiorite to granite between the intrusive phases. so we consider that the magmas for all the phases were probably derived from a differentiation by fractional crystallization of a parental magma. The tonalite magma of the Buseok phase was tapped was tapped from a chamber deep in the crust, and then would have to rise at a rapid rate to its final level of emplacement. The tonalite magma in the chamber was gradually enolved through granodiorite magma into granite magma by fractional crystallization. The magmas of the younger phases were respectively tapped with temporal interval from a evolved magma of the chamber that rose into a shallower lever in the crust, and rose to their present level of emplacement.

  • PDF

Genetic Relationship and Structural Characteristics of the Fe-Ti Ore Body and the Sancheong Anorthosite, Korea (산청 회장암과 철-티탄 광체의 구조적 특징과 발생적 관계)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.571-588
    • /
    • 2014
  • It consists of the Precambrian Jirisan metamorphic complex and Sancheong anorthosite complex and the Mesozoic granitoids which intrude them in the Sancheong area, the Jirisan province of Yeongnam massif, Korea. The study area is located in the western part of the stock-type Sancheong anorthosite complex. We performed a detailed fieldwork on the Sancheong anorthosite (SA) and Fe-Ti ore body (FTO) which constitute the Sancheong anorthosite complex, and reinterpreted the origin of FTO foliation and the genetic relationship between them from the foliations, shear zones, occurrences of the SA and FTO. The new structural characteristics between them are as follows: the multilayer structures of FTO, the derived veins of straight, anastomosing uneven types and block structures related to the size reduction of SA, the gradual or irregular boundaries of SA blocks and FTO showing bulbous lobate margins and comb structures, the FTO foliation and linear arrangements of flow occurrence which is not ductile shear deformation, the discontinuous shear zone of SA, the orientation of FTO foliations parallel to the boundaries of SA blocks, the predominance of FTO foliations toward the boundaries of SA blocks and being proportional to the aspect ratio of plagioclase xenocrysts and SA xenoblocks, and the flow folding structures of FTO foliation. Such field evidences indicate that the SA is not fully congealed when the FTO is melt and the fracturing of partly congealed SA causes the derived veins of FTO and the size reduction of SA. Also the gradual or irregular boundaries of SA blocks and FTO result from the mutual reaction between the not fully congealed SA blocks and the FTO melt, and the FTO foliation is a magmatic foliation which was formed by the interaction between the FTO melt and the partly congealed SA blocks. Therefore, these suggest that the SA and FTO are not formed from the intrusion of different magmas in genesis and age but from a coeval and cogenetic magma through multiple fractionation. We predict that the FTO will show an very irregular occurrence injected along irregular fractures, not the regular occurrence like as the intrusive vein and dike. It can be applied to the designing of Fe-Ti mineral resource exploration in this area.

Deformation structures of the Jurassic Ogcheon granite and the Honam Shearing, Ogcheon Area, Korea (옥천지역 쥬라기 옥천화강암의 변형구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2010
  • The Jurassic Daebo Ogcheon granite is distributed in the Ogcheon area which is located in the central part of the Ogcheon Belt, Korea. This paper newly examines the timing of Honam shearing on the basis of the petrofabric researches on the deformation structures of the Ogcheon granite. The structural shape of Ogcheon granite is mainly characterized by a wedge shaped of E-W trend and an elongate shape of ENE trend in geological map and by contacts parallel to the regional S1 foliation in the host Ogcheon supergroup. It indicates that the pluton was permittedly emplaced after the S1 formation. The main deformation structures are marked by a solid-state tectonic foliation of N-S trend, which passes through the contact of the pluton, and by an aplitic dyke of E-W trend, and by sinistral, NW and E-W oriented shear zones on the eastern border of the pluton. The petrofabric study on the main deformation structures suggests that the tectonic foliation and the aplitic dyke were formed by the Honam dextral strike-slip shearing of (N)NE trend at ca. $500{\sim}450^{\circ}C$ deformation temperature, and that the sinistral shear zones could be induced by the dextral rotation of the pluton from its original site of intrusion, that is, by the shear strain which is due to sliding of the pluton past the host rocks. The history of emplacement and deformation of the Ogcheon granite and the previous results on the timing of Honam shearing would be newly established and reviewed as follows. (1) Early~Middle Jurassic(187~170 Ma); intrusion of syntectonic foliated granite related to Early Honam shearing, (2) Middle Jurassic(175~166 Ma); main magmatic period of Jurassic granitoids, the permitted emplacement of the Ogcheon granite, (3) Middle~Late Jurassic(168~152 Ma); main cooling period of Jurassic granitoids, the deformation of the Ogcheon granite related to Late Honam shearing. Thus, this study proposes that the Honam shear movement would occur two times at least during 187~152 Ma (ca. 35 Ma) through the intertectonic phase of 175~166 Ma.

Early Proterozoic Moyitic Series in Daqingshan, Inner Mongolia : Their Characteristics and Tectonis, Magmatic and Thermodynamic Model (내몽고 다큉샨내의 초기원생대 모이아이트계열 : 특성과 지구조, 마그마 그리고 열역학적 모델)

  • Lin CAO;Wei JIN
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.77-85
    • /
    • 1997
  • The Early Proterozoic reworked rock association occurs within the Preacmbrian high grade metamorphic rocks in the area of Daqingshan, Inner Molgolia. In this association, the various large scale ductile deformation belts, form a nappe structure where the foliation steeply dips to north and the lineation ($340^{circ}-30^{\circ}$) plunges at $45^{\circ}55^{\circ}$. This result indicates the subduction/extension with northern part thrusting over the southern part at high angle. The southern subducted microlithon has the characteristics of prograde metamorphism. The northern thrusted microlithon shows the evidence of retrograde metamorphism with decreasing pressure and increasing temperature. The main rock types of Early Proterozoic Moyites are biotite adamellite and syenogranites occurring in the form of small batholiths or stocks and alkali-feldspar granites in veins. The biotite adamellites are progressively contacted with the Archean and Early Proterozoic rocks and contain a great deal of enclaves of metamorphosed rocks, suggesting an anatexis origin. The geochemical characteristics of moyites show the typical features of anatexis granite. At middle to late Early Proterozoic time, the continent-continent collision formed the large scale thrusting and imbrication of Archean basement rocks. According to the mineral assemblage and thermobarometer of Paria et al. (1988) give the following P-T condition : up-faulted block; $700-710^{\circ}C$, 0.72-0.78 Gpa (early stage) and $600^{\circ}C$, 0.44 Gpa (late stage), footwall block; $620^{\circ}C$, 0.8 Gpa (early stage), $620-840^{\circ}C$, 0.64-0.45 Gpa (peak) and $620-630^{\circ}C$, 0.35Gpa (late stage). These results suggest a clockwise P-T-t path (jin et al., 1991, 1994). According to the depth-temperature model in the comperature subduction zone and the experimental data of Wyllie et al. (1983), we propose a tectonic-magmatic-thermal model to account for metamorphism-anatexis of moyite occurring in subduction-shear zone.

  • PDF

The crenulation of Ogcheon metasedimentary rocks near the Ogcheon granite and the Honam shearing, Korea (옥천화강암 부근 옥천 변성퇴적암류의 파랑습곡구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.157-165
    • /
    • 2010
  • The age unknown Ogcheon metasedimentary rocks and the Jurassic Ogcheon granite (Jocgr) intruding it are distributed in the Ogcheon area, which is located in the central part of the Ogcheon Belt, Korea, This paper newly examines the timing of Honam shearing on the basis of the microstructural researches on time-relationship between the crenulation of Ogcheon metasedimentary rocks and the contact metamorphism by the intrusion of Jocgr. The D2 crenulation phase, which is defined by the microfolding of the S1 foliation in the metasedimentary rocks, is divided into two sub-phases. The one is a sub-phase of Early crenulation (D2a) which is included within old andalusite porphyroblasts, and the other is that of Late crenulation (D2b) which warps around the old andalusite. But they show the same dextral shear sense, the axial planes parallel to each other, and a single crenulation at outcrop scale. The contact metamorphism of andalusite-sillimanite type by the Jocgr occurred during the inter-phases of D2a and D2b, and crystallized the old andalusite masking the D2a crenulation and fibrous sillimanites replacing the D2a crenulation-forming muscovites. New andalusite porphyroblasts synkinematically grew in pressure shadows around the old andalusite or in its outermost mantles during the early stage of the D2b. The D2b occurred still continuously after the growth of the andalusite ceased (= later stage of the D2b). It indicates that the D2b occurred continuously during the period when the Ogcheon granite was still hot and cool. From this study, the crenulation history of Ogcheon metasedimentary rocks and the timing of Honam shearing would be newly established and reviewed as follows. (1) Early Honam shearing; formative period of Early crenulation, (2) main magmatic period of Jurassic granitoids; growth of the old andalusite and fibrous sillimanite by the intrusion of Jocgr, (3) main cooling period of Jurassic granitoids; formative period of Late crenulation related to Late Honam shearing, growth of the new andalusite in the early stage of D2b. Thus, this study proposes that the Honam shear movement would occur two times at least before and after the intertectonic phase which corresponds to the main magmatic period of Jurassic granitoids.

Talc Mineralization in the Middle Ogcheon Metamorphic Belt (I): with Emphasis of the Stable Isotope Studies of the Dongyang Talc Deposit (중부 옥천변성대내의 활석광화작용 (I): 동양활석광상의 안정동위원소연구를 중심으로)

  • Park, Hee-In;Lee, Insung;Hur, Soondo
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.635-646
    • /
    • 1995
  • Mineralized zone in the Dongyang talc deposits occurs on the lowest dolomite member of the Hyangsanri Dolomite belonging to the Ogcheon Supergroup. Ore bodies are emplaced as pipe-like body along the axis of minor folds plunging $40^{\circ}$ to the west developed in these dolomite layers. Amphibolite and chlorite schist are found along the upper or lower contact of all ore bodies (Kim et al., 1963; Park and Kim, 1966). Following the recrystallization and silicification of dolomite, tremolite and tabular and leafy talc(I) of the earlier stage formed, and microcrystalline talc(II) formed in the later stage. Talc(l) and tremolite formed by the reaction between dolomite and the fluid. Whereas talc (II) formed by the reaction between dolomite and fluid, or by the reaction between early formed tremolite and fluid. During the early stage of mineralization, the fluid was the $H_2O-CO_2$ system dominant in $CO_2$, In the later stage, the composition of the fluid changed to $H_2O-NaCl-CO_2$system, and finally to the $H_2O-NaCl$ system. The pressure and temperature conditions of the formation of tremolite associated with talc(I) were 1,640~2,530 bar, and $440{\sim}480^{\circ}C$, respectively. The pressure and temperature condition of talc(II) ore formation was 1,400~2,200 bar, and $360{\sim}390^{\circ}C$, respectively. These conditions are much lower than the metamorphic pressure and temperature of the rocks from the Munjuri Formation located about 5 km to the noJ:th of Dongyang talc deposit ${\delta}^{13}C$ and ${\delta}^{18}O$ values of dolomite which is the host rock of the talc ore deposit are 2.9~5.7‰ (PDB), and -7.4~l6.8‰ (PDB), respectively. These values are little higher than those from the Cambro-Ordovician limestones of the Taebaeksan region, but belong to the range of the unaltered sedimentary dolomite. ${\delta}^{18}O$and ${\delta}D$ values of the talc from Dongyang deposit are 8.6~15.8‰ (vs SMOW), and -65~-90‰ (vs SMOW), respectively, belonging to the range of magmatic origin. These values are quite different from those measured in the metamorphic rocks of Munjuri and Kyemyungsan Formation. ${\delta}^{34}S$ value of anhydrite is 22.4‰ (CDT), which is much lower than ${\delta}^{34}S$ (30‰ vs COT) of sulfate of early Paleozoic period, and indicates the possibility of the addition of magmatic sulfur to the system. Talc ores show the textures of weak foliation and well developed crenulation cleavages. Talc ore deposit in the area is concluded as hydrothermal replacement deposit formed before the latest phase of the deformations that Ogcheon Belt has undergone.

  • PDF