• Title/Summary/Keyword: magma

Search Result 385, Processing Time 0.024 seconds

Origin and Hydrochemical Characteristics of Natural Carbonated Water at Seoqwipo, Jeju Island (제주도 서귀포지역 천연탄산수의 기원과 수리화학특성)

  • Jeong, Chan Ho;Lee, Yong Cheon;Lee, Yu Jin;Choi, Hyeon Young;Koh, Gi Won;Moon, Duk Chul;Jung, Cha Youn;Jo, Si Beom
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.515-529
    • /
    • 2016
  • In this study, geochemical composition, CFCs (Chlorofluorocarbons), ${\delta}^{18}O$, ${\delta}D$, ${\delta}^{13}C$ isotopes and noble gases isotopes (He, Ne) were analyzed to determine their recharge age, source of $CO_2$ gas and noble gases of carbonated hot spring water and carbonated-water samples collected in the Seoqwipo of the Jeju. The pH of the carbonated waters ranges from 6.21 to 6.84, and the high electrical conductivity range ($1,928{\sim}4,720{\mu}S/cm$). Their chemical composition is classified as $Mg(Ca,\;Na)-HCO_3$ and $Na(Ca,\;Mg)-HCO_3$ types. As a result of the calculation of groundwater age using CFCs concentrations as an environmental tracer, the carbonated water and groundwater were estimated to be about 47.5~57.2 years and about 30.3~49.5 years, respectively. The ${\delta}^{13}C$ values of carbonated water range from -1.77 to -7.27‰, and are plotted on thr deep-seated field or the mixing field of the deep-seated and inorganic origin. Noble gases isotopic ($^3He/^4He$, $^4He/^{20}Ne$) ratio shows that helium gas of carbonated hot waters comes from deep-seated magma origin.

[ $^{40}Ar/^{39}Ar$ ] Ages of the Tertiary Dike Swarm and Volcanic Rocks, SE Korea (한반도 남동부 제3기 암맥군과 화신암류의 $^{40}Ar/^{39}Ar$ 연대)

  • Kim Jong-Sun;Son Moon;Kim Jin-Seop;Kim Jeongmin
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.93-107
    • /
    • 2005
  • We determined $^{40}Ar/^{39}Ar$ ages of the Tertiary dike swarms and volcanic rocks distributed in the SE Korea where the most prevalent crustal-deformation and volcanism occurred during the period. In previous study, it was disclosed that the mafic dike swarms on both sides (east and west) of the Yeonil Tectonic Line (YTL) were originated from a same magma although they are consistently aligned with different intrusion directions of NS and NE, respectively. Ages of the mafic dike swarms of this study are $47.3\pm0.8Ma$ and $48.0\pm1.3Ma$, respectively and confirm such conclusion. These facts clarify that the YTL acted as a westernmost limit of the crustal deformation, especially clockwise crust-rotation, during the Miocene. Frequent occurrence of basic dikes indicate strongly that the southeastern part of the Korean Peninsula was under E-W extensional stress field at about 48 Ma, intimately related to the India-Asia collision and subsequent sudden change of the Pacific Plate motion. The ages of the uncommonly appearing intermediate and felsic dikes were determined as $55.9\pm1.5Ma$ and $53.0\pm1.0Ma$, respectively. Ages of the andesitic lava of the Hyodongri Volcanics, the dacitic lava of the Yongdongri Tuff, and dacitic rocks intruding and covering the Churyeong Breccia were determined as $24.0\pm0.5Ma,\;21.6\pm0.4Ma$, $21.8\pm0.1Ma,\;and\;22.0\pm0.5Ma$ respectively. The ages from the volcanics agrees well with the stratigraphy established by the latest field survey, which confirms that the $andesitic\~dacitic$ volcanism was followed by the basaltic volcanism during the Early Miocene.

Distribution and Petrology of the Columnar Joint in South Korea (남한에서 주상절리의 분포와 암석학적 특성)

  • Ahn, Kun Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-59
    • /
    • 2014
  • This study has been designed to collate distribution, morphology, petrology of columnar joint in South Korea. Reported columnar joint areas in South Korea are 68, until the present time. These can be divided into five group by geography and volcanic activity. 1) The 16 columnar joint areas are distributed in Hantangang region. The 15 areas in this region are composed of basaltic lava in the Quaternary period, and the other 1 area is composed of volcanic rocks in the Cretaceous period. 2) The 18 columnar joint areas are distributed in Jeju island. Most of them are composed of basaltic lava(alkali basalt and Hawaiite), and the Sanbangsan and Baegrokdam area are composed of trachyte in the Quaternary period. Colonnade, entablature and chisel mark of the columnar joint are typically occur in basaltic lava. 3) The 5 columnar joint areas are distributed into the Ulleung island and Dokdo including Guksubawi. These are consisted of relatively well-formed trachyte columns in the Quaternary period. 4) The 8 columnar joint areas are distributed into the Pohang, Gyeongju and Ulsan region and consist of the Tertiary period volcanic rock. It's shape are dome, radial, horizontal and vertical. The 4 columnar joint areas are reported in the Pyeongtaek and Asan city of Chungcheongnamdo and Gosung of Gangwondo. All of them are the Tertiary period basalt. 5) The 15 columnar joint areas are distributed into the west and south coast region. Those are consisted of various rock type(from basalt to dacite), various occurrences(lava flow to welded tuff), and various diameters(20 cm to several meters). The columnar joint of Mudeung mountain and Juwang mountain are welded tuff in the Cretaceous period. The columnar joint is distributed over a wide area in South Korea, 5 in Gangwondo, 13 in Gyeonggido, 2 in Chungnam, 14 in Gyeongbuk, 1 in Jeonbuk, 10 in Jeonnam, 5 in Gyeongnam, and 18 in Jeju. The columnar joints in South Korea can be arranged in order of formative period, 18 in the Cretaceous period, 12 in the Tertiary period, and 38 in the Quaternary period. By magma series, 36 are belong to alkaline series and 32 are belong to sub-alkaline series.

The Neoproterozoic and Cretaceous Tectonic Evolution and Important Geoheritages in the Gogunsan Archipelago (고군산군도 지역의 신원생대 및 백악기 지구조 진화과정과 중요 지질유산)

  • Oh, Chang Whan;Kim, Won Jeong;Lee, Seung Hwan;Lee, Bo Young;Kim, Jin Seok;Choi, Seung Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.251-277
    • /
    • 2019
  • The Gogunsan Archipelago is composed of two island groups; the first group includes Mal-do, Myeong-do, Gwangdae-do, and Bangchuk-do islands consisting of Neoproterozoic rocks, and the second group includes Yami-do, Sinsi-do, Muneo-do, Jangja-do, and Seonyu-do islands consisting of Cretaceous rocks. The first group mainly consists of the Bangchuk formation which can be divided into two layers; the lower layer was more deformed than the upper layer. The former was intruded by mafic and felsic volcanic rocks formed in the volcanic arc tectonic setting 930-890 Ma and the latter was deposited ca. 825-800 Ma. In these islands, large scale folds with east-west fold axes were beautifully formed; the Maldo island fold was designated as natural monument and large scale beautiful chevron fold was developed on the Gwangdae-do island. In addition, there are unique zebra-shaped outcrop formed by a mixing of basic and acidic magma and Independent Gate shaped outcrop formed by coastal erosion. On the other hand, the Yami-do, Sinsi-do, Muneo-do, Jangja-do and Seonyu-do islands consist of 92-91Ma Cretaceous volcanic rocks and, in Sinsi-do island, the Nanshan formation deposited ca. 92 Ma. These Cretaceous volcanic rocks formed by melting of the continental crust by the heat supplied from the uplifting mantle due to the extension caused by a retreat of subducting ocean slab. Yami-do and Sinsi-do islands are composed of rhyolite. In Yami-do island, bands with vertical joint formed by cooling of the bottom part of the lava, are shown. In Sinsi-do island, large-scale vertical joints formed by cooling of lava flow, were developed. The Jangja-bong of Jangja-do island and Mangju-bong of Seonyu-do island are composed of brecciated rhyolite and formed a ring shaped archipelago contributing to the development of marine culture by providing natural harbor condition. They also provide beautiful views including 'Seonyu 8 views' along with other islands. As mentioned above, the Gogunsan archipelago is rich in geoheritages and associated cultural and historical resources, making it worth as a National Geopark.

Petrology of the Blastoporphyritic Granite Gneiss in the Southwestern Part of the Sobaegsan Massif (소백산육괴 서남부의 잔류반상 화강편마암의 암석학적 연구)

  • Lee, Choon-Hee;Lee, Sang-Won;Ock, Soo-Seck;Song, Young-Sun
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.528-547
    • /
    • 2001
  • The blastoporphyritic granite gneiss (BPGN) including much alkali-feldspar megacrysts occurs in Jiri mountains area, southwestern part of Sobaegsan massif, Korea. The BPGN is formed gneiss complexes with other gneisses in Precambrian. The BPGN was named as porphyroblastic gneiss with porphyroblasts of alkali-feldspar megacrysts by other researchers, but the BPGN includes of euhedral alkali-feldspars (microcline), and the boundary with the granitic gneiss represents sharp contact as intrusive relationship. The BPGN mainly composes of alkali-feldspar megacrysts, quartz, plagioclase, K-feldspar and biotite some almandine and accessary minerals are muscovite, chlorite, apatite, zircon and opaques. The alkali-feldspar is microcline with perthitic texture. An content of plagioclases show 30 to 40. Biotites occur two type, one is Brown biotite which shows compositional ranges of Mg/Fe+Mg ratios from 0.38 to 0.52, the other is Green Bt. which is retrograde product. Camels to be various sizes and shapes have composition of almandine with 73 to 80 mole percent, but represent retrogressive zoning from core (X$_{pyr}$: 15.9${\sim}$20.8) to rim (X$_{pyr}$:13.7${\sim}$15.9) to be evidence of retrograde metamorphism. Megacrysts of alkali-feldspar in the BPGN show rectangular shape of euhedral and some become ellipsoidal or spheroidal in shape and the average size up to 20 cm long. The megacryst includes of biotite, plagioclase and quartz, and rarely euhedral apatite as inclusions. In petrochemistry the BPGN represents granodiorite composition, characteristics of peraluminous S-type granitoid and calc-alkaline features.

  • PDF

Petrochemistry and Geologic Structure of Icheon Granitic Gneiss around Samcheog Area, Korea (삼척지역 이천화강편마암의 암석화학과 지질구조)

  • Cheong Won-Seok;Cheong Sang-Won;Na Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.25-38
    • /
    • 2006
  • Metamophic rocks of Samcheog area, northeastern Yeongnam massif, was studied petrochemically. This area includes Precambrian Hosanri Formation (schists and gneisses) and granitoid (Icheon granitic gneiss, leucocratic granite and Hongjesa granite), Cambrian sedimentary rocks, and Cretaceous sedimentary and acidic volcanic rocks. Hosanri formation is composed of quartz+plagioclase+K-feldspar+biotite+muscovite+granet${\pm}$cordierite${\pm}$sillimanite. Mineral assemblage of biotite granitic gneiss, which is massive granodioritic rock with weak foliation, is similar to Hosanri formation. According to mineral assemblages, metamorphic rocks of studied area can be divided into two metamorphic zones (garnet and sillimanite zones). From Icheonri area, major, trace and rare earth element data of biotite granitic gneiss and luecocratic granite suggest that source rock is politic rocks of Hosanri formation and source magma was formed by anatexis and experienced fractionation of plagioclase. Trace element diagram show collisional environment such as syn-collisional, volcanic arc granite. Orientation of faults in study area have three maximum concentrations, $N54^{\circ}\;W/77^{\circ}\;SW,\;N49^{\circ}\;W/81^{\circ}\;NE\;and\;N10^{\circ}\;W/38^{\circ}\;NE$. Structure analysis suggests that faults in study area ware formed by uplift and compression. Faulting age is guessed after Tertiary because some shear joints is developed in dikes to intrusive Cretaceous acidic volcanic rock. Hosanri formation and Icheon granitic gneiss had experienced similar deformation history because they have maximum concentration to foliations, $N89^{\circ}\;E/55^{\circ}\;SE\;and\;N80^{\circ}\;E/45^{\circ}\;SE$, respectively.

Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area (청산 일대에 분포하는 화강암류의 광물조성과 주성분원소 지구화학)

  • 사공희;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.185-209
    • /
    • 1997
  • Granitic rocks in the Cheongsan area cosist of three plutons-Baegrog granodiorite, Cheongsan porphyritic granite, and two mica granite. Amphilboles from the Baegrog granodiorite belong to the calcic amphilbole group and show compositional variations from magnesio-hornblende in the core to actinolitic hornblende in the rim. Biotites from the three granites represent intermediate compositions between phlogopite and annite. Muscovites from the two mica granite are considered to be primary muscovite in terms of the occurrence and mineral chemistry. Each granitic rock reveals systematic variation of major oxide contents with $SiO_2$. Major oxide variation trends of the Baegrog granodiorite are fairly different from those of Cheongsan porphyritic granite and two mica granite. The latter two granitic rocks are also different with each other in variation trends for some oxides. Thus three granitic rocks in the Cheongsan area were solidifield from the independent magmas of chemically different, heterogeneous origin. The granitic rocks in the area show calc-alkaline nature. The whole rock geochemistry shows that the Baegrog granodiorite and Cheongsan porphyritic granite belong to metaluminous, I-type granite, whereas the two mica granite to peraluminous, I/S-type granite. The opaque mineral contents and magnetic susceptibility represent that the granitic rocks in the area are ilmenite-series granite, indicating that each magma was solidified under relatively reducing environment. The tectonic environment of the granitic activity in the area seems to have been active continental margin. Alkali feldspar megacryst in the Cheongsan porphyritic granite is considered to be magmatic, judging from the crystal size, shape, arrangement, and distribution pattern of inclusions. The petro-graphical characteristics of the Cheongsan porphyritic granite can be explained by two stage crystallization. Under the smaller degree of undercooling the alkali feldspar megacrysts rapidly grew owing to slow rate of nucleation and fast growth rate. At the larger degree of undercooling the nucleation rate and density drastically increased and the small crystals of the matrix were formed.

  • PDF

Dyke Swarms and Fracture System and their Relative Chronology and Tectonic Implications in the Jukbyeon-Bugu Area, Uljin, East Korea (한반도 동부 울진 죽변-부구 지역 암맥군과 단열계의 상대연령과 지구조적 의미)

  • Kim, Chang-Min;Kim, Jong-Sun;Song, Cheol-Woo;Son, Moon;Choi, Sung-Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.173-189
    • /
    • 2011
  • Basic to acidic dykes and systematic joints are observed pervasively in the Jukbyeon-Bugu area, Uljin, east Korea. In order to classify the dykes and joints and to determine the relative chronology, their geometries, kinematics, and cross-cutting relationships, and the petrography and geochemistry of dykes are synthetically analyzed. Based on the orientations and cross-cutting relationships of 144 dykes (137 basic and 7 acidic dykes) and 370 systematic joints, three basic dike swarms (M-10, M-80, and M-100), one acidic dyke group (AD), and four joint sets (J-10, J-40, J-80, and J-150) are classified. Some of the J-150 joints reactivated as dextral strike-slip fault are recognized in the field and named as F-340R. According to petrographic, geochemical, and occurrence features in the field, M-80 and M-100 dykes have originated from a co-magma and intruded under the same stress field, even though they have intruded through different passages, preexisting fractures and new fractures created by magmatic pressure, respectively. And the relative chronology of dyke swarms and joint sets in the study area is determined as follows : ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ ${\rightarrow}$ . And the M-80 (M-100) and M-10 dyke swarms intruded under NNE-SSW and NW-SE trending horizontal minimum stress fields, respectively. According to a synthesis of the results of the previous and this studies, the M-80, M-10, and F-340R are interpreted to have been formed about 64-52 Ma, Eocene~Oligocene, and Miocene, respectively.

Petrological Study of the Dioritic and Granitic Rocks from Geochang Area (거창 일대에 분포하는 섬록암류와 화강암류에 대한 암석학적 연구)

  • Han, Mi;Kim, Sun-Woong;Yang, Kyoung-Hee;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.167-180
    • /
    • 2010
  • The geochemical studies on the plutonic rocks of the Geochang, the central part of the Ryongnam massif, were carried out in order to constrain the petrogenesis and the paleotectonic environment. The objects of this study are dioritic rocks, biotite granite and hornblende granite. The modal compositions indicate that the dioritic rocks are quartz diorite, quartz monzodiorite, tonalite, biotite granites are granodiorite, granite and hornblende granites are granite, quartz monzonite, quartz syenite. These rocks belong to the calc-alkaline series. Especially, trace elements such as Sr, Nb, Sr, Ti are depleted, suggesting that these rocks are produced in the subduction zone related to calc-alkaline series. Also, the studied granitic rocks correspond to peraluminous and I-type. Chondrite-normalized REE patterns show that LREE are enriched much more than HREE, and have weak Eu(-) anomaly. It is similar to pattern of Jurassic granitoids in the South Korea. Total REE value of the biotite granite and hornblende granite ranges 76.21~137.05 ppm and 73.84~483.21 ppm, respectively, also $(La/Lu)_{CN}$ value ranges 9.61~36.47 and 7.17~21.85. It is suggest that studied rocks suppor their emplacement at active continental margin. Also, these rocks are derived from magma generated by partial melting of lower continental crust materials.

Adakitic Signatures of the Jindong Granitoids (진동화강암체의 아다카이틱한 특성)

  • Wee, Soo-Meen;Kim, Yun-Ji;Choi, Seon-Gyu;Park, Jung-Woo;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.223-236
    • /
    • 2007
  • The eastern extension of the Cordilleran-type orogenic belt continues from southeastern China to the Chukot Peninsula through the Korean Peninsula. The Gyeongsang basin, located in the southeastern part of the Korean Peninsula and the Inner Zone of southwest Japan are characterized by extensive distribution of Cretaceous to Tertiary I-type calc-alkaline series of intrusive rocks. These intrusive rocks are possibly the result of intensive magmatism which occurred in response to the subduction of the Izanagi Plate beneath the northeastern part of the Eurasian Plate. The Jindong granitoids within the Gyeongsang basin are reported to be adakites, whose signatures are high $SiO_2,\;Al_2O_3$, Sr, Sr/Y La/Yb and, low Y and Yb contents. The major and trace element contents of the Jindong granitoids fall well within the adakitic field, whereas other Cretaceous granites in the same basin are plotted in the island arc ADR area in discrimination diagrams. Chondrite normalized REE patterns show generally enriced LREEs (La/Yb)C = 3.6-13.8) and slight negative to flat Eu anomalies. The mean Rb-Sr whole rock isotopic age of the Jindong granitoids is $114.6{\pm}9.1$ Ma with an initial Sr isotope ratio of 0.70457. These values suggest that the magma has mantle signature and intruded into the area during Early Cretaceous. The Jindong granitoids have similar paleogeographical locations, paleotectonic environments and intrusion ages to those of the Shiraishino granodiorites of Kyushu Island and the Tamba granitoids of San'yo belt located on southwestern Japanese arc.