• Title/Summary/Keyword: maesil cheong

Search Result 3, Processing Time 0.02 seconds

Compositional changes in maesil-cheong formulated with turanose during the storage period (투라노스 당침을 통해 제조된 매실청의 저장기간 중 성분 함량 변화)

  • Kim, Jung-Geun;Yoo, Sang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.688-694
    • /
    • 2021
  • Turanose is a potential candidate for use as a functional sweetener because of its gentle taste, low calorie, and non-cariogenicity. The aim of this study was to replace sucrose with turanose to produce health-beneficial maesil-cheong. Quality effects of turanose on maesil-cheong were evaluated by determining the contents of free sugars, organic acids, amygdalin, and antioxidant activity. The pH and Brix values of sucrose- and turanose-based maesil-cheong remained at the same level between 2.83 and 3.00 and 54.6-58.6°Bx, respectively, after 90-day storage. Among oxalic, malic, and citric acids, citric acid content was the highest in both maesil-cheong samples. Turanose did not significantly hydrolyze in maesil-cheong, whereas sucrose was completely hydrolyzed to glucose and fructose. Thus, turanose is suitable for the development of acidic maesil-cheong to improve its health promoting effect. Turanose showed product qualities similar to sucrose-based maesil-cheong. Turanose can be used as a functional sweetener or bulking agent in processed foods.

Changes in oligosaccharide content during the storage period of maesil cheong formulated with functional oligosaccharides (기능성 올리고당으로 제조한 매실청의 저장기간 중 올리고당 함량 변화)

  • Bae, Moon-Joo;Yoo, Sang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.169-175
    • /
    • 2019
  • This study was carried out to produce the health functional food maesil cheong by replacing sucrose with isomaltooligosaccharide and fructooligosaccharide. The substitution levels of these oligosaccharides were between 10% and 100%. A 1:1 (w/w) mixture of maesil and sugar was adopted for preparing maesil cheong. The pH of maesil cheong remained unchanged (between 2.72 and 3.00) during 90-day storage period, regardless of oligosaccharide content. Citric and malic acids were identified in maesil cheong; citric acid accounted for 71-82% of the total organic acid content. Sucrose was completely liquefied in the sample after 30 days and was hydrolyzed steadily into fructose and glucose over the storage period. More than 75% of isomaltooligosaccharides remained in maesil cheong after 90 days when sucrose was completely replaced with isomaltooligosaccharide. However, fructooligosaccharides were mostly decomposed at the end of storage period. Thus, isomaltooligosaccharides may be suitable for acidic maesil cheong products to expect its health functional effect.

Toxicokinetics and oral toxicity of Maesil-cheongs with reduced amygdalin levels (아미그달린 저감화 매실청의 독성동태학적 및 경구독성 연구)

  • Kim, Hyeon-Jin;Go, Mi-Ran;Yu, Jin;Hwang, Ji-Soo;Choi, Hyun Woo;Kim, Hyun-Seok;Choi, Soo-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.629-635
    • /
    • 2018
  • In this study, the safety aspect of Maesil-cheongs with reduced amygdalin levels was investigated in terms of toxicokinetics and repeated oral toxicity. Plasma or UVC treatment was utilized to obtain Maesil-cheongs with reduced amygdalin levels. The toxicokinetic study demonstrated that the oral absorption of amygdalin decreased remarkably after a single-dose oral administration of both plasma- and UVC-treated Maesil-cheongs. The fourteen-day repeated oral toxicity study revealed that plasma- or UVC-treated Maesil-cheongs did not cause changes in body weight, food intake, water consumption, and absolute and relative organ weights. No significant effects on hematological and serum biochemical parameters were found. Histopathological examination showed no abnormality or toxicological change. These findings suggest that plasma- and UVC-treated Maesil-cheongs have no toxicity potential, and these processes will be useful to obtain products with safe, reduced amygdalin levels.