• Title/Summary/Keyword: macroscopic interface

Search Result 38, Processing Time 0.022 seconds

A modified RBSM for simulating the failure process of RC structures

  • Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.219-229
    • /
    • 2018
  • In this paper, a modified rigid body spring model (RBSM) is proposed and used to analyze the damage and failure process of reinforced concrete (RC) structures. In the proposed model, the concrete is represented by an assembly of rigid blocks connected with a uniform distribution of normal and tangential springs to simulate the macroscopic mechanical behavior of concrete. Steel bars are evenly dispersed into rigid blocks as a kind of homogeneous axial material, and an additional uniform distribution of axial and dowel springs is defined to consider the axial stiffness and dowel action of steel bars. Perfect bond between the concrete and steel bars is assumed, and tension stiffening effect of steel bars is modeled by adjusting the constitutive relationship for the tensile reinforcement. Adjacent blocks are allowed to separate at the contact interface, which makes it convenient and easy to simulate the cracking process of concrete. The failure of the springs is determined by the Mohr-Coulomb type criterion with the tension and compression caps. The effectiveness of the proposed method is confirmed by elastic analyses of a cantilever beam under different loading conditions and failure analyses of a RC beam under two-point loading.

Analysis on the solute redistribution in coarsening dendrite arms during solidification of binary metal alloys (수지상가지의 조대화를 고려한 이원합금의 응고과정동안 용질 재분배 해석)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1437-1448
    • /
    • 1996
  • This paper presents a simplified model for approximate analysis of the solute redistribution in coarsening dendrite arms during solidification of binary metal alloys. By introducing a quadratic concentration profile with a time-dependent coefficient, the integral equation for diffusion in the solid phase is reduced to a simple differential relation between the coefficient and the solid-liquid interface position. The solid fraction corresponding to the system temperature is readily determined from the relation, phase equilibrium and the overall solute balance in which the liquid phase is assumed to be completely mixed. In order to validate the developed model, calculations are performed for the directional solidification of Al-4.9 mass Cu alloy. The predicted eutectic fractions for a wide range of the cooling rate reasonably agree with data from the well-known experiment as well as sophisticated numerical analyses. Also, the results for the back diffusion limits are consistent with available references. Additional calculations show that the characteristic parameters such as the coarsening, density variation and nonlinarity in the phase diagram significantly affect the microsegregation. Owing to the simplicity, efficiency and compatibility, the present model may be suitable for the micro-macroscopic solidification model as a microscopic component.

Design and Implementation of a Network Weather Map System (네트워크 기상 관리 시스템의 설계 및 구현)

  • Kim, Hyun-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.113-121
    • /
    • 2013
  • In this paper, we design and implement a network weather map system, which provides a macroscopic view on the whole network topology as well as the network link status and utilization. The proposed system also provides distributed NetFlow-based database facility and Web-based query interface, through which network operators can check the detailed network router or link status as well as submit predefined queries to easily find out and locate heavy hitters and/or their usage. We believe that our develop system will be a useful tool for small-to-mid-scale ISPs or network operators, in managing their own networks in a cost-effective way.

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

SCANNING ELECTRON MICROSCOPY ANALYSIS OF FUEL/MATRIX INTERACTION LAYERS IN HIGHLY-IRRADIATED U-Mo DISPERSION FUEL PLATES WITH Al AND Al-Si ALLOY MATRICES

  • Keiser, Dennis D. Jr.;Jue, Jan-Fong;Miller, Brandon D.;Gan, Jian;Robinson, Adam B.;Medvedev, Pavel;Madden, James;Wachs, Dan;Meyer, Mitch
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.147-158
    • /
    • 2014
  • In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U-7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U-7Mo dispersion fuel elements with pure Al, Al-2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U-7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission gas bubbles. Additionally, solid fission product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U-7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al-Si matrices.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential

  • Wang, Zetao;Guo, Kailun;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3117-3129
    • /
    • 2022
  • Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520-600 K (the startup of the heat pipe), the h has approached 5-6 W m-2 K-1 while liquid film thickness is in 11-13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.

Considerations on a Transportation Simulation Design Responding to Future Driving (미래 교통환경 변화에 대응하는 교통 모의실험 모형 설계 방향)

  • Kim, Hyoungsoo;Park, Bumjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.60-68
    • /
    • 2015
  • Recent proliferation of advanced technologies such as wireless communication, mobile, sensor technology and so on has caused significant changes in a traffic environment. Human beings, in particular drivers, as well as roads and vehicles were advanced on information, intelligence and automation thanks to those advanced technologies; Intelligent Transport Systems (ITS) and autonomous vehicles are the results of changes in a traffic environment. This study proposed considerations when designing a simulation model for future transportation environments, which are difficult to predict the change by means of advanced technologies. First of all, approximability, flexibility and scalability were defined as a macroscopic concept for a simulation model design. For actual similarity, calibration is one of the most important steps in simulation, and Physical layer and MAC layer should be considered for the implementation of the communication characteristics. Interface, such as API, for inserting the additional models of future traffic environments should be considered. A flexible design based on compatibility is more important rather than a massive structure with inherent many functions. Distributed computing with optimized H/W and S/W together is required for experimental scale. The results of this study are expected to be used to the design of future traffic simulation.