• Title/Summary/Keyword: macrocell corrosion

Search Result 7, Processing Time 0.021 seconds

Corrosion Resistance of Cr-Bearing Rebar to Macrocell Corrosion Environment Induced by Localized Carbonation

  • Tae, Sung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.17-22
    • /
    • 2006
  • Artificial cracks were made in the cover concrete of specimens embedding ten types of steel rebars of different Cr contents. The research aims for developing Cr-bearing steel rebars resistant to macrocell corrosion environments induced by cracking in cover concrete. The cracks were subjected to intensive penetration of carbon dioxide (carbonation specimens) to form macrocells. The carbonation specimens were then treated with accelerated corrosion curing, during which current macrocell corrosion density was measured. The corrosion area and loss from corrosion were also measured at the end of 105 cycles of this accelerated curing. The results of the study showed that Cr-bearing steel with Cr content of 5% or more suppressed corrosion in a macrocell corrosion environment induced by the differences in the pH values due to carbonation of cracked parts. Cr-bearing steels with Cr content of 7% or more are proven to possess excellent corrosion resistance.

Corrosion Resistance of Cr-bearing Rebar to Macrocell Corrosion Caused by Concrete with Crack (피복 콘크리트의 균열 발생에 기인한 매크로셀 부식 환경하에서의 Cr강방식철근의 방식성)

  • Tae, Sung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.79-86
    • /
    • 2006
  • This study was investigated to corrosion resistance of Cr-bearing rebars to macrocell corrosion caused by concrete with crack. Ten types of steel bars having different Cr contents were embedded in concretes with imitation crack. The corrosion resistance of the Cr-bearing rebar was examined by measuring half-cell potential, macrocell corrosion current, corrosion area and weight loss up to 105 cycles of salt spray testing. The results revealed that the Cr content required for corrosion resistance in a macrocell corrosion environment caused by chloride ion gap of $3kg/m^3$ was 9% or more. The corrosion-resisting performance of Cr-bearing rebar was particularly noticeable with a Cr content of 11% or more.

Corrosion Measurements on Reinforcing Rebars in Reinforced Concrete Specimen (철근 콘크리트 시험편의 철근방식에 관한 측정법)

  • 이강균;장지원;한기훈;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.281-286
    • /
    • 1997
  • Recent construction activities and maintenance of marine facilities have been accelerating to keep up with rapid economic growth in Korea. Marine concrete structures are exposed to salts an chloride from ocean environments. The corrosion of reinforcement steel caused by chloride-penetration into concrete may severely effect the durability of concrete structures. The objective of this research is to develop a durable concrete by investigating the corrosion resistance of various corrosion protection systems utilizing different water/cement ratio, silica fumes, corrosion inhibitors and etc. A tow-year verification test on various corrosion protection systems has been doing in the laboratory and at the seaside. Corrosion investigations on reinforcement steel are now under progress for more than 180 concrete specimen. Corrosion-related measurements include macrocell corrosion current, instant-off voltage between corroding and noncorroding reinforcement, chloride contents, the corroded surface areas on the reinforcement steel, and etc. A low level of corrosion is investigated on reinforcement steels in concrete specimen made with corrosion inhibitors or applied aqueous impregnating corrosion inhibitors into their surface, even though high chloride contents of concrete specimen.

  • PDF

Evaluation of Corrosion Protective System for Reinforced Concrete Structures Constructed With Sea Sand (해사 혼입된 콘크리트 구조물의 부식도 평가)

  • 김웅희;홍기섭;오승모;장지원;최응규;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.203-209
    • /
    • 1997
  • An experimental study to evaluate to evaluate corrosion protection systems was undertaken with 44 reinforced concrete slab specimens subjected to cyclic wet and dry saltwater exposure. Corrosion measurements included monitoring macrocell corrosion currents, which are genrerally accecpted in United States practice. Test results indicate that specimens containing 2 kg/$\textrm{m}^3$ of NaCl and exposed to wet(outdoor) and dry(indoor) conditions but not to saltwater show very low values of corrosion measurements regardless applying any corrosion protective systems. Corrosion currents of the specimens exposed at 10 percent of NaCl were higher than that of the specimen exposed at 5 percent of NaCl, so the density of the salt water had an influential effect on the test. For the specimens with water repellent membrane currents kept relatively low numerical values, but test specimens with surface corrosion inhibitor protective system showed high values of corrosion current. It would be expected that evaluation of the corrosion protective systems need long-term measurement.

  • PDF

Application of Macrocell Sensor System for Monitoring of Steel Corrosion in Concrete Structure Exposed to Marine Environment (해양 콘크리트구조물의 철근부식 모니터링을 위한 매크로셀 센서 시스템의 적용)

  • Lee, Seung-Tae;Moon, Dae-Joong;Kim, Wan-Jong;Moon, Jae-Heum;Kim, Hak-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.241-247
    • /
    • 2010
  • Corrosion of steel embedded in concrete is one of the foremost factors that affect the durability of concrete structures in marine environments. This paper presents an application technique of anode-ladder-system to evaluate corrosion behaviours of marine concrete structure. In order to investigate the behaviours quantitatively, the measurement of potential and current was performed on the concrete elements subjected to the penetration and diffusion of chloride ions. The main variable was the heights from seawater level; namely 3.7, 6.0 and 8.2 m. As a result of the monitoring, it was found that the corrosion characteristics differently behaved with the increasing height. Additionally, through migration test, the relationship between compressive strength of concrete and diffusivity of chloride ions was observed. It is suggested, ultimately, that in order to reduce or mitigate steel corrosion, both appropriate concrete cover depth and high-quality of concrete in early ages should be done.

Macrocell and Microcell Corrosion of Reinforcing Steel in Concrete Immersed in Saltwater (염수 환경하에서 콘크리트내 철근의 마크로 및 마이크로 셀 부식)

  • 이재봉;이수열;정영수;이광명;정원기;배수호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.211-214
    • /
    • 1999
  • 염화물 및 방청제가 함유된 철근 콘크리트의 부식특성을 마크로 셀 부식측정 방법인 갈바닉 전류 측정과 마이크로 셀 부식측정 방법인 선형분극 측정법 및 교류 임피던스법을 이용하여 염화물 및 방청제의 영향을 평가하였다. 마크로/마이크로 셀 부식측정기 Calcium Nitrite 방청제가 첨가된 시험체의 경우 갈바닉 전류 측정결과 낮은 전류값을 유지하였고, 교류 임피던스 측정결과 분극저항의 감소가 나타나지 않았으므로, 방청제의 첨가가 콘크리트내 철근의 부동태 피막을 보호하여 부식저항성을 향상시킴을 알 수 있었다.

  • PDF

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab;Vahed Ghiasi;Aliakbar Shirzadi Javid
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.287-302
    • /
    • 2023
  • Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.