• Title/Summary/Keyword: macrocell

Search Result 100, Processing Time 0.019 seconds

Power Control of Femto Base Station for Protecting Macrocell Users (매크로셀 사용자 보호를 위한 펨토셀 기지국의 전송전력 제어)

  • Jeong, Dong Geun;Kim, Yu Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.865-873
    • /
    • 2013
  • In the cellular networks adopting femtocells, the macrocell users can suffer from severe interference by the femtocells. In this paper, we propose a distributed transmission power control scheme for femtocells to protect macrocell users. With the proposed scheme, when a macrocell user experiences outage due to severe interference, it informs the interfering femtocell base station (BS) of the outage occurrence, via the macrocell BS. Then, the femtocell BS reduces the transmission power to protect the macrocell user. The proposed scheme does not require too much control information among the macrocell BS, the macrocell users, and the femtocell BS. Moreover, the computational complexity in femtocell BS is very low. By using simulation, we show that the performance of the proposed scheme is good enough to use in practice, in spite of its simplicity.

Femtocell Searching Technique Using Synchronization Signals for Next-Generation Mobile Communication Systems (차세대 이동통신 시스템에서 동기신호를 이용한 펨토셀 탐색 기법)

  • Kim, Yeong Jun;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.44-57
    • /
    • 2013
  • In this paper, we propose a femtocell searching technique which can prevent a macrocell UE(user equipment) from losing synchronism to its serving macrocell near closed access femtocells in co-channel deployment due to the leakage of femtocell signals by using a CS(Common Signal). The CS, commonly transmitted by femtocells in a macrocell at the same time, enables the macrocell UEs to be kept synchronized with their serving macrocells since the CINR(Carrier to Interference and Noise Ratio) of base stations in macrocell can be kept high even near closed access femtocells. Also, the CS is designed in such a way that a macrocell UE can recognize the existence of femtocell by using the metric CSCINR(Common Signal Carrier to Interference and Ratio) measured with CS. In addition, the proposed femtocell searching technique can reduce the frequency of femtocell searching trial by using the metric on mobility of a macrocell UE defined in this paper, and the reduction of the frequency of handover trial can be also expected as a byproduct.

Corrosion Resistance of Cr-Bearing Rebar to Macrocell Corrosion Environment Induced by Localized Carbonation

  • Tae, Sung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.17-22
    • /
    • 2006
  • Artificial cracks were made in the cover concrete of specimens embedding ten types of steel rebars of different Cr contents. The research aims for developing Cr-bearing steel rebars resistant to macrocell corrosion environments induced by cracking in cover concrete. The cracks were subjected to intensive penetration of carbon dioxide (carbonation specimens) to form macrocells. The carbonation specimens were then treated with accelerated corrosion curing, during which current macrocell corrosion density was measured. The corrosion area and loss from corrosion were also measured at the end of 105 cycles of this accelerated curing. The results of the study showed that Cr-bearing steel with Cr content of 5% or more suppressed corrosion in a macrocell corrosion environment induced by the differences in the pH values due to carbonation of cracked parts. Cr-bearing steels with Cr content of 7% or more are proven to possess excellent corrosion resistance.

Handover Control for WCDMA Femtocell Networks

  • Chowdhury, Mostafa Zaman;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.741-752
    • /
    • 2010
  • The ability to seamlessly switch between the macro networks and femtocell networks is a key driver for femtocell network deployment. The handover procedures for the integrated femtocell/macrocell networks differ from the existing handovers. Some modifications of existing network and protocol architecture for the integration of femtocell networks with the existing macrocell networks are also essential. These modifications change the signal flow for handover procedures due to different 2-tier cell (macrocell and femtocell) environment. The handover between two networks should be performed with minimum signaling. A frequent and unnecessary handover is another problem for hierarchical femtocell/macrocell network environment that must be minimized. This work studies the details mobility management schemes for small and medium scale femtocell network deployment. To do that, firstly we present two different network architectures for small scale and medium scale WCDMA femtocell deployment. The details handover call flow for these two network architectures and CAC scheme to minimize the unnecessary handovers are proposed for the integrated femtocell/macrocell networks. The numerical analysis for the proposed M/M/N/N queuing scheme and the simulation results of the proposed CAC scheme demonstrate the handover call control performances for femtocell environment.

Reverse Link Characterization of a Spectrally Overlaid Macro/Micro Cellular CDMA System Supporting Multimedia Traffic (멀티미디어 서비스를 위한 스펙트럼 중첩 매크로/마이크로 셀룰러 CDMA 시스템의 역방향 링크 특성)

  • Kang, Chang-Soon;Park, Joong-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.440-450
    • /
    • 2003
  • The reverse link of a spectrally overlaid macrocell/microcell cellular CDMA system supporting multimedia traffic is characterized in terms of the required signal power, interference, and capacity. Several narrowband subsystems are overlaid with a wideband subsystem in macrocells, while a single wideband subsystem is operated in a microcell with the same spectrum as the macrocell wideband subsystem. Using a typical propagation model the reverse link signal power and interference are characterized as the relative user signal power and the cross-tier interference factors between the macrocell and the microcell. The reverse link capacity of the overlay system is then analyzed. Analytical results show that the dominant parameters affecting the system performance are the spectral overlay ratio and the distance between the microcell and macrocell base stations. In particular, when the distance equals a half of macrocell radius, optimum performance can be achieved by minimizing the cross-tier interference factors. These results can be applied to CDMA multimedia network planning in heavily populated traffic areas.

A study on traffic analysis in voice/data mixed PCS system (음성/데이타 복합서비스 PCS시스템의 트래픽 분석)

  • 김영일;진용욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.136-148
    • /
    • 1996
  • In this paper, we analyze the traffic characteristics in microcell and macrocell overlaid PCS system which process voice and dta calls separately each others. in this system, data calls are delayed in queue when all of channels are occupied, while voice calls are bolcked in that case. For this, we calculated inter-microcell handoff area dwelling time distribution and handoff area dwelling time distribution between microcell and macrocell. We analyze traffic performance using this results. We used M/M/C/K model, and analyzed traffic performance of macrocell with handoff area variation of microcell.

  • PDF

Service Block Based Resource Allocation Scheme for Macrocell-Femtocell Networks

  • Lee, Jong-Chan;Lee, Moon-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.29-35
    • /
    • 2015
  • The heterogeneous LTE (Long Term Evolution)-Advanced networks comprising a macrocell and femtocells can provide an efficient solution not only to extend macrocell coverage but also to deal with packet traffics increasing explosively within macrocells. An efficient resource management scheme is necessary to maintain the QoS (Quality of Service) of mobile multimedia services because the LTE-Advanced system should support not only voice but also mobile applications such as data, image and video. This paper proposes a resource management scheme to guarantee QoS continuity of multimedia services and to maximize the resource utilization in OFDMA (Orthogonal Frequency Division Multiple Access) based LTE-Advanced systems. This scheme divides the resources into several service blocks and allocates those resources based on the competition between macrocell and femtocell. Simulation results show that it provides better performances than the conventional one in respect of handover failure rate and blocking rate.

Distributed Resource Allocation in Two-Hierarchy Networks

  • Liu, Shuhui;Chang, Yongyu;Wang, Guangde;Yang, Dacheng
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.159-167
    • /
    • 2012
  • In this paper, a new distributed resource allocation algorithm is proposed to alleviate the cross-tier interference for orthogonal frequency division multiplexing access macrocell and femtocell overlay. Specifically, the resource allocation problem is modeled as a non-cooperative game. Based on game theory, we propose an iterative algorithm between subchannel and power allocation called distributed resource allocation which requires no coordination among the two-hierarchy networks. Finally, a macrocell link quality protection process is proposed to guarantee the macrocell UE's quality of service to avoid severe cross-tier interference from femtocells. Simulation results show that the proposed algorithm can achieve remarkable performance gains as compared to the pure waterfilling algorithm.

Interference Avoidance through Pilot-Based Spectrum Sensing Algorithm in Overlaid Femtocell Networks

  • Sambanthan, Padmapriya;Muthu, Tamilarasi
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • Co-channel interference between macro-femtocell networks is an unresolved problem, due to the frequency reuse phenomenon. To mitigate such interference, a secondary femtocell must acquire channel-state knowledge about a co-channel macrocell user and accordingly condition the maximum transmit power of femtocell user. This paper proposes a pilot-based spectrum sensing (PSS) algorithm for overlaid femtocell networks to sense the presence of a macrocell user over a channel of interest. The PSS algorithm senses the pilot tones in the received signal through the power level and the correlation metric comparisons between the received signal and the local reference pilots. On ensuring the existence of a co-channel macrocell user, the maximum transmit power of the corresponding femtocell user is optimized so as to avoid interference. Time and frequency offsets are carefully handled in our proposal. Simulation results show that the PSS algorithm outperforms existing sensing techniques, even at poor received signal quality. It requires less sensing time and provides better detection probability over existing techniques.

Downlink Power Allocation of the OFDMA Femtocell for Inter-cell Interference Mitigation (OFDMA 초소형 기지국의 인접셀 간섭을 최소화하기 위한 하향링크 전력 할당 기법)

  • Jung, Hyun-Duk;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.743-751
    • /
    • 2010
  • OFDMA femtocell becomes an effective solution to support indoor high data rate services instead of the macrocell systems. Although the advantage of the femtocell, the co-channel interference between the femocell and the macrocell is the most significant problem that reduces the system performance. Macrocell users who have no permission to access the femtocell suffer from interference of the downlink transmission of femtocell. Therefore, the femtocell should use transmission power as small as possible to reduce interference to macrocell users. In this paper, we define the margin adaptive power allocation problem for the femtocell and propose a heuristic power allocation algorithm to solve the problem. Simulation results show the performance of the proposed algorithm.