• Title/Summary/Keyword: macro-nutrient

Search Result 76, Processing Time 0.042 seconds

Nutritional Assessment and Mineral Content of Wild and Cultured Catfish Silurus asotus (자연산 및 양식산 메기의 미네랄 함량 및 영양평가)

  • GYE, Hyeon-Jin;SHIM, Kil-Bo;LIM, Chi-Won;SONG, Mi-Young;KIM, Dae-Hee;KIM, Bo-Kyoung;CHO, Young-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1364-1368
    • /
    • 2015
  • This study was performed to evaluate mineral contents of catfish Silurus asotus. As a result of mineral content, the mean content of the macro mineral was (in descending order): K (310.36-412.66 mg/100 g), P (186.42-223.02 mg/100 g), Na (35.32-57.87 mg/100 g), Mg (22.88-31.87 mg/100 g), Ca (9.05-13.07 mg/100 g). In comparison, the mean content of the micro mineral was (in descending order): Fe (0.26-0.95 mg/100 g), Zn (0.26-1.02 mg/100 g), Cu (ND-0.08 mg/100 g), Mn (0.01-0.03 mg/100 g). A proportion of mineral intakes with the dietary reference intakes for Koreans (KDRIs) set by the Korean Nutrition Society. Nutrient uptake proportion of mineral intakes was (in descending order): P (62.16%), K (20.71%), Mg (16.82%), Fe (13.02%), Zn (11.38%) Cu (10.94%), Na (6.59%), Ca (3.09%), Mn (0.96%). The mineral content was compared with the major protein food sources according to the Korea Health Statistics (2013) such as polished rice, pork, chicken, beef, eggs and milk. The calcium content contains; lower level of milk and eggs, chicken whereas higher levels of rice, pork and beef. Catfish has less iron content than major protein food source. Phosphorus and potassium contain higher level of major protein food sources.

Coal Bottom Ash Application on Park Site Soil and Its Impacts on Turfgrass Growth and Soil Quality

  • Oh, Se Jin;Kim, Yong Hyok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • Bottom ash (BA) has different macro- and micronutrients such as B, Mo, Fe, Ca, and Mg, providing useful resources for plant growth and soil quality. The objective of this study was to evaluate the applicability of artificial top-soil treated with BA in park area as a vegetation base material, especially for turfgrass growth. Collected BA was mixed with peat moss and clay at the ratio of 70:10:20 (w/w). In order to evaluate the park quality and turfgrass growth in park area, the artificial soil was applied with BA along with the control or without BA. Result showed that exchangeable K and P were increased by $11.4mg\;kg^{-1}$ and $163mg\;kg^{-1}$, respectively, compared to the control soil when the artificial soil was treated with BA. Microbial population and enzyme activity (Acid-phosphatase, APA) in artificial soil having BA also increased as 2 times and 10%, respectively, compared to the control soil. Comparing turfgrass growth and yield between general soil and artificial soil, about 2 times higher plant yield (fresh weight) was observed as artificial soil was applied comparing to general soil. Furthermore, nutrient concentration in turfgrass was averaged as 0.440% for $P_2O_5$, 0.456% for CaO, 1.198% for $K_2O$ and 0.188% for MgO that all values are higher than general soil (0.323% for $P_2O_5$, 0.416% for CaO, 0.610% for $K_2O$ and 0.173% for MgO). Application of BA can be useful for vegetation base material in park site.

Sedimentary and Benthic Environment Characteristics in Macroalgal Habitats of the Intertidal Zone in Hampyeong Bay (함평만 조간대 해조류 분포지역의 퇴적 및 저서환경 특성)

  • Hwang, Dong-Woon;Koh, Byoung-Seol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.694-703
    • /
    • 2012
  • To understand the characteristics of sedimentary and benthic environments in habitats of naturally-occurring intertidal benthic macroalgae, various geochemical parameters of sediment (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) and pore water (temperature, salinity, pH, and nutrients) were measured in the southern intertidal zone of Hampyeong Bay at two month intervals from April to October 2009. Ecological characteristics including the distribution and biomass of benthic macroalgae were also investigated. Benthic macroalgae were distributed below 4 to 5 m depth from mean sea level near the lower portion of the intertidal zone where air exposure time is relatively short. The distribution area and biomass of benthic macroalgae gradually decreased during the study period. The surface sediments in the benthic algal region were mainly composed of finer sediments, such as slightly gravelly mud and mud. The temperature, salinity, pH, and nutrient concentrations (except dissolved inorganic nitrogen) in pore water did not differ in regions with and without benthic macroalgae, whereas the mean grain size and the concentrations of IL, COD, and AVS in sediments were much higher in regions harboring benthic macroalgae. The correlation between mean grain size and IL in sediments displayed two distinct gradients and the slope was much steeper in regions harboring benthic macroalgae, indicating that the content of organic matter in benthic algal region is not solely dependent on mean grain size. Our results indicate that the benthic macroalgae in the southern intertidal zone of Hampyeong Bay play an important role in the accumulation of organic matter in sediment.

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

Effect of Fertigation with Indigenous Microorganism and EM on Soil Chemical and Microbial Properties and Growth of Cherry Tomatoes (토착미생물과 EM 활용 액비 처리가 방울토마토의 토양 화학성과 미생물상 및 생장에 미치는 영향)

  • Choi, Hyun-Sug;Jung, Ji-Sik;Kuk, Yong-In;Choi, In-Young;Jung, Seok-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.15-24
    • /
    • 2019
  • The study was compared for soil chemical and microbial properties as well as growth of the cherry tomato (Lycopersicon esculentum var. cerasiforme) plants environmentally friendly gown for 3 years and 5 years, which had been fertigated with homemade liquid fertilizer (LF) with indigenous microorganism as an additional fertilizer. Treatment included LF with indigenous microorganism for 3 years (3-year IM-LF) and for 5 years (5-year IM-LF), with an effective microorganism for 10 years (EM-LF), which had been applied with 1,000 times of dilution in the farmhouse. IM-LF and EM-LF materials had increased pH pattern for 16 weeks, in particular for increase of 1.2 for EM-LF. IM-LF material contained slightly higher EC but similar level of 0.2 dS/m to EM-LF. For a pot experiment in the greenhouse, IM-LF treatment increased root dry weight of the cherry tomato plants. In the farmhouse experiment, IM-LF treatment increased to 7.5 of soil pH and 8.4 dS/m of EC, indicating high salt accumulation. EM-LF treatment increased to 62 g/kg of soil OM, which would have affected concentrations of macro essential nutrients, including T-N in the soil. However, the optimum soil chemical levels for growth of cherry tomato plants were observed on the IM-LF plots. EM-LF treatment increased number of bacteria and actinobacteria in the soil. EM-LF treatment increased concentrations of macro essential nutrients in the plants, except for P, with similar nutrient concentrations observed between 3-year IM-LF and 5-year IM-LF-treated plants. Leaf SPAD and PS II levels decreased in the plants treated with 3-year IM-LF. EM-LF treatment increased leaf width and length, number of leaves, canopy area, plant height, and stem diameter in the mid-term stage of growth, which were not significantly different between the treatments. EM-LF treated-plants had two times higher leaf dry weight than those of values observed on the IM-LF plants, which was the opposite result observed on the number of fruit.

Changes in Crop Growth and Nutrient Concentrations of Tissue and Soil Solution in Raising of Hot Pepper Plug Seedlings as Influenced by Various Pre-planting Nitrogen Levels Incorporated into a Inert Medium (상토 조제과정에서 혼합된 질소 시비 수준 차이가 고추 플러그 묘 생장과 상토 및 식물체 무기염 농도 변화에 미치는 영향)

  • Oh, Sang Se;Kim, Yun-Seob;Park, Myong Sun;Kim, Hyun Cheul;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.173-179
    • /
    • 2018
  • Investigation of the optimum levels of pre-plant nitrogen for raising of hot pepper (cv. Nokkwang) plug seedlings was the objective of this research. To achieve this, the pre-plant nitrogen levels were varied to 0, 100, 250, 500, 750, 1,000, and $1,500mg{\cdot}L^{-1}$ and the other essential nutrients were controlled to equal concentrations in all treatments. All the fertilizers were added during the formulation of the mixed medium of coir dust, peatmoss, and perlite with the ratio of 35, 35, and 30% (v/v/v). The root medium containing pre-plant fertilizer was packed into 50-cell plug trays and seeds were sown. The measurement of pH and EC in every week, soil solution analysis for nutrients in week 0, 3, and 7 and growth measurements as well as tissue analysis for nutrient contents in week 7 were conducted. The pHs measured before seed sowing did not show significant differences, but the differences among treatments became significant as seedlings grow bigger. The soil solution ECs were significantly different among treatments in week 0 and these differences were diminished by degrees after week 3, resulting in no significant differences among treatments in week 7. The trends in changes of $NH_4-N$, $NO_3-N$, and other the macro-element concentrations in soil solution of root media were similar to those of ECs. The treatments of 500 and $750mg{\cdot}L^{-1}$ N were more effective than other treatments on seedling growth. The seedling growths in the treatments containing higher N than $1,000mg{\cdot}L^{-1}$ and control were severely suppressed. The elevated pre-plant N concentrations in the root medium resulted in the increase of tissue N contents. The treatments of 500 and $750mg{\cdot}L^{-1}$ N shown the highest seedling growths had 5.13% and 5.31%, respectively, in tissue N contents based on the dry weight of above ground tissue at week 7. The results of this study indicated that the optimum level of pre-plant N is 500 to $750mg{\cdot}L^{-1}$ for the raising of hot pepper plug seedlings.

Comparison of Health Status and Nutrient Intakes of Elders Who Participated in MOW and Free Congregate Meal Services (가정배달급식과 무료 회합급식 이용 노인의 건강 및 영양섭취상태 비교)

  • Chung, Eun-Jung;Shim, Eu-Gene
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.11
    • /
    • pp.1399-1408
    • /
    • 2007
  • This study was conducted to compare health and nutritional status of 45 home-living elderly people receiving free Meals on Wheels (MOW) (13 men, 32 women) and 81 low income class elderly people receiving free congregate meals (CM) (10 men, 71 women) served in Seoul. Data were obtained from questionnaires, anthropometry and interviews for the 24-hour dietary recall methods. There were no significant differences between the two groups in age and body mass index. Education level, type of housing, family type and income of the two groups also were not significantly different. In MOW, frequencies of exercise were lower while the prevalence of stroke, respiratory disease and loneliness were higher, compared with the CM. The scores of ADL, IADL and food habit of MOW were lower than those of CM. The average daily nutritional intake of both MOW and CM were as a whole under the DRI for Koreans. Energy and macro-nutrient intakes of MOW were tended to be lower than CM (except protein intakes for female). Ca, K, vitamin A, vitamin $B_1$, vitamin $B_2$, vitamin C and folate intakes of MOW were less than 50% of DRI. Percentages of subjects consuming energy less than 75% of EER and 4 nutrients intakes less than EAR were higher in MOW (42.2%) than in CM (1.2%). Our results indicated that dietary nutritional status of MOW was very poor, especially in the case of female elderly groups. For the welfare of the home-living elderly people receiving free MOW, meal service programs should be improved in quality of diet by national supports.

Influence of Post-planting Fertilizer Concentrations Supplied through Sub-irrigation in Winter Season Cultivation of Tomato on the Seedling Growth and Changes in the Chemical Properties of Root Media (저면관비 방법으로 동절기 토마토 육묘시 추비 농도가 묘 생장과 상토의 화학성 변화에 미치는 영향)

  • Park, In Sook;Shim, Chang Yong;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This research was conducted to investigate the influence of post-planting fertilizer concentrations on the growth of seedlings and changes of nutrient concentrations of media in tomato seedling production through sub-irrigation. Two root media such as peat moss (grade of 0 to 6 mm, PM06) plus perlite (grade of 1 to 2 mm (PE2)(7:3, v/v) and peat moss (grade of 5 to 15 mm, PM515) plus PE2 (7:3, v/v) were formulated and filled into 72-cell plug trays. After seeds of 'Dotaerang Dia' tomato were sown and germinated at $28^{\circ}C$, the trays were moved to greenhouse and seedlings were raised 35 days. When the cotyledons were emerged, post-planting fertilizers of 13-2-13, 15-0-15 and 20-9-20 ($N-P_2O_5-K_2O$) were applied in a sequence. The fertilizer concentrations based on N in each plug stage were differed with $25mg{\cdot}L^{-1}$ in three treatments. The fertilizer solutions were supplied when the weight of plug trays decreased to 40 to 50% compared to container capacity. The root media were collected in 1, 2, 4, and 5 weeks after sowing and were divided into top, middle, and bottom parts, then were analysed for pH, EC and macro-nutrient concentrations. The seedling growth was investigated 5 weeks after sowing. The pH and EC in PM06+PE2 was higher than those of PM515+PE2. The bottom and mid-part had higher pH and lower EC compared to upper part in each medium. The differences of EC between upper and bottom parts were around 2 times in each medium. The $NH_4-N$ and K concentrations in program 3 of PM06+PE2 showed the highest concentrations among all treatments. The $NO_3-N$ concentrations in PM06+PE2 increased gradually and this rising tendency become severe as post-planting fertilizer concentrations were elevated. The seedling growth in terms of fresh and dry weights was the highest in the treatment of program 2 in PM06+PE2 among all treatments tested. Above results indicate that the gradual increases of fertilizer concentrations from 25 to $125mg{\cdot}L^{-1}$ in plug stages 2, 3, and 4 plug stages are desirable for

Comparison of Seasonal Nutrient Variations and Productivity between Rice Fields Conventionally Managed and Recommended Fertilized in Large-Scale Environment-Friendly Agricultural Districts (광역친환경 벼 농업 단지 내 관행구와 추천시비구의 시기별 무기성분과 생산성 비교)

  • Lee, Ju-Ryeong;Choi, Hyun-Sug;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.2
    • /
    • pp.173-191
    • /
    • 2019
  • The study was initiated to compare seasonal nutrient variations and rice (Oryza sativa L.) productivity in each of leading rice farm with conventionally managed and recommended fertilized of the large-scale environment-friendly agricultural districts in Jangheung, Suncheon, and Okcheon provinces in 2017. Suncheon rice experimental farm plots included a recommended fertilization plot that had been additionally sown hairy vetch in the fall of previous year, while Okcheon rice farm included a recommended fertilization plot applying half amount of the compost in the conventional plot. A Jangheung rice farm only practiced crop-livestock farming system. Soil pH and EC in all experimental plots were suitable levels for rice growth to cultivate. Seasonal soil pH from March to September was the highest for Suncheon rice farm, and seasonal soil EC was the highest for Jangheung rice farm. Seasonal soil T-N increased in all the plots from March to June in particular for Suncheon rice farm, and Jangheung rice farm had the lowest seasonal soil P. Seasonal soil K decreased in all the plots, with the lowest levels observed for Okcheon farm. Seasonal soil NH4+ mostly increased by up to 90 mg/kg in Jangheung rice farm from March to June. Seasonal plant T-N, P and K concentrations were the highest for Jangheung rice farm. Seasonal plant T-N and P concentrations decreased from June to September, but K leveles were fluctuated between 2.0% and 2.5%. Seasonal SPAD value was the lowest in Suncheon conventional plot. Jangheung rice farm plot produced 6,303 kg of rice per ha, which was approximately two times higher than those of Okcheon recommended plot. The seasonal T-N, P and K balance was the highest in Okcheon conventional plot, with the lowest values observed for Suncheon conventional plot. As a result, Suncheon recommended plot showed relatively low levels of seasonal macro-nutrient balance and the highest rice production, which could be the most environmentally friendly farm practiced conducted in this study.

Effects of Oyster-Shell Meal on Improving Spring Chinese Cabbage Productivity and Soil Properties (굴 패화석 비료가 배추 수량 및 토양 특성에 미치는 효과)

  • Lee, Ju-Young;Lee, Chang-Hoon;Yoon, Young-Sang;Ha, Byung-Hyun;Jang, Byoung-Choon;Lee, Ki-Sang;Lee, Do-Kyoung;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.274-280
    • /
    • 2005
  • Enormous amount of oyster-shell waste has been illegally disposed at oyster farm sites along the southern coast of Korea and then made a serious problem in environmental side. To increase the consumption of oyster shell meal as a soil amendment, the effects of oyster shell meal on soil properties and spring Chinese cabbage productivity were evaluated in silt loam soil to which 0, 4, 8, 12 and $16Mg\;ha^{-1}$ of oyster-shell meal fertilizer were added. Hydrated lime treatment ($2Mg\;ha^{-1}$) was selected as a control. Oyster-shell meal fertilizer, which made by a simple crushing and has high alkalinity as a calcium materials, had significant effects on neutralizing acid soil and on supplying calcium element. Spring Chinese cabbage yields increased with shell meal application. Plant uptakes of macro-nutrients such as P and C, and micro-nutrient such as B were significantly increased by oyster-shell meal application and then contributed to promote Chinese cabbage growth. The highest yield was achieved following the addition of $8Mg\;ha^{-1}$ shell meal application, and the same yield with that in lime treatment was at the $4Mg\;ha^{-1}$. Oyster-shell meal had more substantial effect on suppling calcium and on improving soil pH than that of lime. In conclusion, oyster shell meal fertilizer could be a good supplement to other inorganic soil amendments to improve nutrient balances in upland soils.