• Title/Summary/Keyword: macro-micro manipulator

Search Result 4, Processing Time 0.022 seconds

Macro-Micro Manipulation with Visual Tracking and its Application to Wheel Assembly

  • Cho Changhyun;Kang Sungchul;Kim Munsang;Song Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.461-468
    • /
    • 2005
  • This paper proposes a wheel-assembly automation system, which assembles a wheel into a hub of a vehicle hung to a moving hanger in a car manufacturing line. A macro-micro manipulator control strategy is introduced to increase the system bandwidth and tracking accuracy to ensure insertion tolerance. A camera is equipped at the newly designed wheel gripper, which is attached at the center of the end-effector of the macro-micro manipulator and is used to measure position error of the hub of the vehicle in real time. The redundancy problem in the macro-micro manipulator is solved without complicated calculation by assigning proper functions to each part so that the macro part tracks the velocity error while the micro part regulates the fine position error. Experimental results indicate that tracking error satisfies the insertion tolerance of assembly $({\pm}1mm)$, and thus it is verified that the proposed system can be applied to the wheel assembly task on a moving hanger in the manufacturing line.

Coordinated Control of a Macro/Micro Robot with Separate Controllers (제어기가 분리 설계된 매크로/마이크로 로봇의 공동작용 제어)

  • Hwang, Jung-Hun;Kwon, Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-316
    • /
    • 2000
  • A coordination method for a macro/micro robot with separate controllers is proposed and evaluated. The macro/micro robot system generally has independent controllers for the macro and the micro robot respectively. A controller for the coordination of the macro and the micro robot has been designed based on the stable independent controller of each system. The method and trajectory generation method is also proposed to track the moving desired position rapidly. The control method and trajectory generation method is also proposed to track the moving desired position rapidly. The control strategy has been implemented to the macro/micron robot system to evaluate the performance. The experimental results show that the proposed method for maintaining the micro robot within its workspace has uniform performance over the various range of the bandwidth and the proposed trajectory generator is shown to be efficient.

  • PDF

Study on the Precision Characteristics of a Planar 3 Degrees-of-Freedom Parallel Mechanism (평면형 3 자유도 병렬 메카니즘의 정밀도 특성에 관한 연구)

  • Kim, Jae-Sub;Kim, Hee-Guk;Cho, Hwang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.781-786
    • /
    • 1996
  • In this paper, output precision characteristic of planar 3 and 6 degree-of-freedom parallel mechanisms are investigated. The 6 degree-of-freedom mechanism is formed by adding an additional small link along with an actuated joint in each of serial subchain of the 3 degree-of-freedom mechanism. First, kinematic analysis for two parallel mechanisms are performed, then their first-order kinematic characteristics are examined via isotropic index and minimum velocity transmission ratio of the mechanisms. It can be concluded that the planar 6 degrees-of-freedom parallel mechanism can be very effectively employed as a high-precision macro-micro manipulator from the analysis results when its link lengths are properly chosen.

  • PDF

A study on the control-in-the-small characteristics of a planar parallel mechanism (평면형 병렬 메카니즘의 국소적 제어 특성에 관한 연구)

  • Kim, Whee-kuk;Cho, Whang;Kim, Jae-Seoub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.360-371
    • /
    • 1998
  • In this paper, output precision characteristics of a planar 6 degree-of-freedom parallel mechanisms are investigated, where the 6 degree-of-freedom mechanism is formed by adding an additional link along with an actuated joint in each serial subchain of the planar 3 degree-of-freedom parallel mechanism. Kinematic analysis for the parallel mechanism is performed, and its first-order kinematic characteristics are examined via kinematic isotropic index, maximum and minimum input-output velocity transmission ratios of the mechanisms. Based on this analysis, two types of planar 6 degrees-of-freedom parallel manipulators are selected. Then, dynamic characteristics of the two selected planar 6 degree-of-freedom parallel mechanisms, via Frobenius norms of inertia matrix and power modeling array, are investigated to compare the magnitudes of required control efforts of both three large actuators and three small actuators when the link lengths of three additional links are changed. It can be concluded from the analysis results that each of these two planar 6 degrees-of-freedom parallel mechanisms has an excellent control-in-the-small characteristics and therefore, it can be very effectively employed as a high-precision macro-micro manipulator when both its link lengths and locations of small and large actuators are properly chosen.

  • PDF