• Title/Summary/Keyword: machining surface

Search Result 1,785, Processing Time 0.022 seconds

A Study on the Characteristics of BTA Deep Drilling for Marine Part Carbon and Alloy Steels

  • Sim, Sung-Bo;Kim, Chi-Ok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.40-48
    • /
    • 2000
  • The term "deep holes" is used to describe the machining of holes with a relatively large length to diameter ratio. The main feature of BTA deep hole drilling is the stabilization of cutting force necessary for the self guidance of the drill head. An additional feature is the cutting tool edges that are unsymmetrically placed on the drill head. There is an increasing necessity to predict the hole geometry and other dynamic stability behavior of deep hole drilling guidance. In this study, the effects of BTA deep hole drilling conditions on the hole profile machined piece are analyzed using domain analysis technique. The profile of deep hole drilled work piece is related to cutting speed, feed rate, chip flow, tool wear, and so on. This study deals with the experimental results obtained during the BTA drilling on SM45C, SM55C carbon steels and SCM440 steels under various cutting conditions, and these results are compared with analytical evaluations.aluations.

  • PDF

A Study of Cutting Factor Analysis and Reliability Evaluation of ASTM(F136-96) Material by Taguchi Method (다구치 방법에 의한 ASTM(F136-96)의 절삭인자 분석과 신뢰성 평가)

  • Jang, Sung-Minl;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • Machine operator and quality are affected by chip during cutting process to product machine parts. This paper presents a study of the influence of cutting conditions on the surface roughness obtained by turning using Taguchi method for safety of turning operator. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of its low thermal conductivity and chemical reactivity. Therefore titanium alloys are known as difficult-to materials. An orthogonal array, the signal-to-noise ratio, the analysis of variance are employed to investigate the cutting characteristics of implant material bars using tungsten carbide cutting tools of throwaway type. Also Experimental results by orthogonal array are compared with optimal condition to evaluate advanced reliability. Required simulations and experiments are performed, and the results are investigated.

An Experimental Study on Tool Wear of Small Diameter Endmill for High Speed Milling of Hardened Mold Steel (고경도 금형강의 고속가공시 소직경 볼엔드밀의 마모에 대한 실험적 연구)

  • Heo Y. M.;Jung T. S.;Yang J. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.114-120
    • /
    • 2005
  • High speed milling experiment on the hardened mold steel (CALMAX at hardness of HRc 55) is carried out using small diameter ball endmill. Tool lift and wear characteristics under the various machining parameters are investigated. Effect of dynamic runout on the wear of the tool is also studied. For most of the cases, catastrophic chipping of tool edge is not observed and uniformly distributed wear on the flank surface of the tool is obtained. It is found that lower rate of tool wear is obtained as the cutting speed is increased. Also, high pick feed rate is found to be more favorable in terms of tool wear and material removal rate.

  • PDF

A Study on Ultrasonic Vibration Cutting of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 초음파 진동절삭에 관한 연구)

  • 김정두;이은상;최인휴
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 1994
  • The main applications of CFRP are sports, aerospace and general industrial uses including automobiles. As this application fields expands the opportunity of machining, but CFRP is difficult to cut because of delamination of the composites and the short tool life. In this paper, the machinability of multidirectional CFRP by means of ultrasonic vibration cutting, which has been verified experimentally investigated.The experimentally to be highly effective in view of cutting force and surface quality.

Machinability of Carbon Fiber Epoxy Composites in Turning (선삭가공에 있어서 탄소섬유 에폭시 복합재료의 절삭 특성)

  • Kim, Gi-Soo;Lee, Dai-Gil;Kwak, Yoon-Keun;Nam-Gung, Gung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.63-73
    • /
    • 1991
  • Carbon fiber epoxy composite materials are widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in aircraft structures or machine elements, accurate surfaces for bearing mounting or joints must be provided, which require precise machining. In this paper, the machinability of the carbon fiber epoxy composite materials in turning was experimentally investigated. The cutting mechanism and the Taylor Tool Wear constants were determined and the surface roughness was measured w.r.t. cutting speeds and feed rates.

  • PDF

Detection of Built-up Edge by AE Signal Analysis (AE 신호 분석에 의한 구성인선의 감지)

  • Oh, Min-Seok;Won, Jong-Sik;Jung, Youn-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.18-24
    • /
    • 1999
  • ThisPaper investigates the feasibility of using acoustic emission signal analysis for the detection of built-up edge during machining. Experiments were conducted on a CNC-lathe using conventional carbide insert tools under various cutting conditions. The cutting forces were also measured for comparisons. Experimental evidence is presented which indicates that the presence of a built-up edge can significantly affect the generation of acoustic emission in metal cutting. It is shown that under conditions in which a built-up edge is generated, the variation of $AE_{rms}$ signal with cutting speed can be quite different from the generally accepted linear, monotonic increase as previously reported. The feasibility of utilizing $AE_{rms}$ in built-up edge sensing is suggested.

  • PDF

Mechanical Properties of Welded Materials after Plasma Cutting (플라즈마 절단 후 제작도니 용접부의 기계적 특성)

  • Shin, Kyu-In;Kim, Hyung-Gon;Park, Jai-Hak;Kim, Sung-Chung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.68-74
    • /
    • 1999
  • The influence of surface preparation methods after plasma cutting on the quality of weld zone was investigated. For comparison, three types of welded specimens were prepared by machining (WM), plasma cutting with light regrinding (WPG) and without regrinding (WP), by using three kinds of materials, carbon steel (SM45C), stainless steel (STS304) and aluminum alloy (A6061-T6). Nondestructive examination, hardness test, microstructure examination, and fracture toughness test were performed. The results showed that there was no appreciable reduction in hardness or fracture toughness in WP specimens. But a little difference in heat affected zone size was observed.

  • PDF

An analysis of cutting process with ultrasonic vibration by ARMA model (자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석)

  • I.H. Choe;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF

Effects of Process Parameters on Laser Ablation Based Machining and Measurements (레이저 어블레이션 기반 가공 및 계측에서 공정변수의 영향)

  • Jeong, Sung-Ho;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1359-1365
    • /
    • 2011
  • The changes of ablation characteristics with respect to laser parameters and material parameters during pulsed laser ablation of solids were discussed with experimental results. Although laser wavelength, laser pulse width, and laser pulse energy are the primary factors to be considered, it is shown that other parameters such as laser spot size and material properties also critically influence on the ablation results. It is further demonstrated that the microstructural characteristics of the target can lead to completely different ablation rate and surface morphology.

A Study on the Cutting Characteristics of Glass Fiber Reinforced Plastics by Tool Materials and Type (유리섬유강화 플라스틱의 공구재질 및 형상에 따른 절삭특성에 관한 연구)

  • An, Sang-Ook;Noh, Sang-Lai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1216-1224
    • /
    • 1996
  • In the use of glass fiber reinforced plastics it is often necessary to cutting the components, but the cutting GFRP is often made difficult by the delamination of composites and the short tool life. In this paper, the machinability of GFRP by mean of tool materials and type was experimentally investigated. By proper selection of cutting tool material and type excellent machining of this workpiece is achieved. The surface quality relate closely with the feed rate and cutting tools.