• Title/Summary/Keyword: machining process monitoring

Search Result 151, Processing Time 0.026 seconds

A Study on Tool Wear and AE Signal Characteristics in Face Milling of SUS304 (SUS304의 정면밀링 가공시 공구마모와 AE신호 특성에 관한 연구)

  • Oh, S.H.;Kim, S.I.;Kim, T.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.5-14
    • /
    • 1995
  • In recent years, the automization of cutting machine tools has been developed very fast. Hance, the in-process detection of cutting condition is very important for automatic manufacturing system in factory. Acoustic Emission(AE) has been widely used in monitoring the cutting conditions, because of high sensitivity of AE signal and low cost of AE equipment. This experimental study deals with the relations between AE signal, cutting force charcteristics and tool wear in the machining of SUS304. Face milling operation is used for the analysis between tool wear and AE signal.

  • PDF

Real-Time Estimation of Radial and Axial Depth of Cuts in End Milling Using the Cutting Forces (절삭력을 이용한 엔드밀링 공정의 실시간 축방향 및 반경방향 절삭깊이 추정)

  • 김승철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.34-39
    • /
    • 1999
  • If the on-line cutting conditions (e.g. speed, feedrate, radial and axal depth of cuts) can be identified in an end milling process, much information about cutting forces will be estimated from the cutting force model. Therefore, those estimated conditions can be applied to monitoring and control areas. In this paper, a real-time estimation algorithm for radial and axial depth of cuts is studied in end milling using the averaging cutting forces per tooth. The analytical estimation models of depth of cuts are derived from the geometric cutting force model. The validity of the estimation models is verified on a horizontal machining center through the experiments in various cutting conditions.

  • PDF

Forging Analysis of Upper Swash Plate for Unmanned Helicopter (무인 헬기용 상부 스와시 플레이트의 단조공정해석)

  • Kim, K.S.;Lee, O.Y.;Kong, J.H.;Yeo, H.T.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.347-349
    • /
    • 2009
  • Unmanned helicopters are needed in various fields such as monitoring system, agriculture and forest fire. Swash plate is a essential part for exact driving of unmanned helicopter. And it is usually produced by machining. In this research, hot forging process of upper swash plate has been studied to improve proof stress against repeated loading of the product. In the forming analysis, design parameters such as effective stress, effective strain and distribution of damage have been considered in the hot forging.

  • PDF

The Damage Evaluation for the Application of Acoustic Emission in a Drilling Procedure of the CFRP Composite Materials (CFRP의 드릴작업시 AE적용에 의한 손상평가)

  • 최병국;윤유성
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.47-51
    • /
    • 2001
  • The carbon fiber reinforced plastics(CFRP) have been widely used in aircraft and spacecraft structures as well as sports goods because it has high specific strength, high specific stiffness and low coefficient of thermal expansion. Machining of CFRP poses problems not frequently seen for metals due to the nonhomogeneity, anisotropy, and abrasive characteristics of CFRP. Delamination is a common problem faced while drilling holes in CFRP using conventional drilling. Therefore, AE characteristics related to drilling damage process of unidirectional and [0/90/]s crossply laminate composite was studied. Also drilling damage like the delamination was observed by video camera in real time monitoring technique. From the results, we basically found the relationships between the delamination from drilling and AE characteristics for CFRP composites.

  • PDF

Monitoring of Eccentric Machining Error and Cutting Force Variation using Cylindrical Capacity Spindle Sensor on CNC Turning (CNC선삭시 주축변위센서를 이용한 편심 가공오차와 절삭력 변화특성의 검출)

  • Maeng Heeyoung;Kim Sungdong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.300-306
    • /
    • 2005
  • This paper presents the methodology for measuring eccentricity of the machined cylindrical part using CCS(cylindrical capacitance spindle sensor) signal in the CNC turning process. We use capacitance type sensor to take full advantage of averaging effect by using large capacitance area to encompass the whole side of a sensor. The intentionally proposed initial eccentricity is applied to the experimental testpieces, and their resultant relationships between CCS orbits and eccentricities are investigated. As a result, the possibility as a automatic detection apparatus for the CNC lathe is considered based on the linearities of CCS signal and magnitude of eccentricity of machined cylindrical surfaces.

  • PDF

Detection of Tool Wear using Cutting Force Measurement in Turning (선사가공에 절삭력을 이용한 공구마멸의 감지)

  • 윤재웅;이권용;이수철;최종근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining system A major topic relevant to metal-cutting operations is monitoring toll wear, which affects process efficiency and product quality, and implementing automatic toll replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. The static com-ponents of cutting force have been used to detect flank wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the force modeling is performed for various cutting conditions. The normalized force dis-parities are defined in this paper, and the relationships between normalized disparity and flank were are established. Final-ly, artificial neural network is used to learn these relationships and detect tool wear. According to proposed method, the static force components could provide the effective means to detect flank wear for varying cutting conditions in turning operation.

  • PDF

Study on Tool Wear and Cutting Forces by Tool Properties in CFRP Drilling (CFRP 드릴링 공정에서의 공구의 특성에 따른 절삭부하와 공구마모 거동의 고찰)

  • Park, Dong Sub;Jeong, Yeong Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.83-88
    • /
    • 2017
  • Recently, the use of advanced materials with light weight significantly increases because of global regulation on CO2 emission. Especially, CFRP (carbon fiber reinforced plastics) one of the most promising advanced materials. Since CFRP has pretty higher strength per unit weight than steel, it is one of most popular materials in aviation industry and its application to automobile rises sharply. Especially, one of the frequent machining processes for CFRP is drilling to make a hole, however, CFRP drilling has troublesome limitations in hole quality and productivity induced due to delamination, splintering and severe tool wear. Particularly, cutting loads increase caused by tool wear makes delamination and splintering even severer. Therefore, tool wear monitoring or reduction in CFRP drilling must be considered seriously. In this study, we measured thrust force, flank wear, and tool surface temperature in drilling using various tools with different sizes and materials. Consequently, it was presented the effects of tool properties on drilled hole quality, thrust force and tool surface temperature.

Analysis of Monitoring and Recycling Technology Technologies of Cleaning Solution and Rinse Water in the Aqeous Cleaning System (수계 세정시스템의 세정액/헹굼수의 모니터링 및 재활용 기술 분석)

  • Han, Sang-Won;Lee, Ho Yeoul;Bae, Jae-Heum;Ryu, Jong-Hoon;Park, Byeong-Deog;Jeon, Sung-Duk
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.225-242
    • /
    • 2001
  • Cleaning process is necessary for machining parts or manufacturing finished products in the industry. Most of domestic and foreign companies are now trying to adopt environment-friendly aqueous cleaning agents instead of CFC-113 and 1,1,1-TCE which are ozone-depleting substances. However, the aqueous cleaning system has a disadvantage due to its generation of lots of waste water since the system utilizes water in cleaning and rinsing processes. Thus, it is very important that monitoring and recycling technologies of the cleaning solution and the rinse water should be introduced in the aqueous cleaning system in order to minimize generation of waste water and to maintain its cleaning performance for a quite long time. In this paper, the cleaning agents utilized in the aqueous cleaning system and cutting oils which are main contaminants were examined and analyzed. And the monitoring and recycling technologies of the aqueous cleaning system which can be employed in the industrial fields were also reviewed and evaluated.

  • PDF

Development of Large-scale Tool Dynamometer for Measuring Three-axis Individual Force (3축 분력 측정이 가능한 대형 공구동력계 개발)

  • Kim, Joong-Seon;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.29-36
    • /
    • 2019
  • In modern society in which the fourth industrial revolution has come to the fore and rapid technology innovations are taking place, a phenomenon of making and selling small quantities of various products that consumers want instead of mass producing one item has emerged. As the market is moving toward the multi-item small-sized production system, there is a need for a system in which a machine independently judges and carries out machining and post-processing. In order for a machine to judge processing on its own, it is necessary to measure the force applied to a product. This study aimed to develop a large-scale dynamometer that enables three-axis measurement using octagonal ring load cells. As for the device's configuration, four octagonal ring load cells, which were previously researched, were used to enable three-axis measurement. It was reconfigured by modifying the attachment position of the octagonal ring load cells' strain gauge and the Wheatstone bridge of each axis, and a system was set up to allow the monitoring of data measured through the monitor. The configured device calculated a strain rate by an experiment, and this rate was compared with the theoretical strain rate to find a correction value. The correction value was entered into a formula, deriving a modified formula. The modified formula was entered into the device, which completed the large-scale dynamometer.

A Study on the Effect of Macro-geometry and Gear Quality on Gear Transmission Error (기어 제원 및 기어 가공정밀도가 기어 전달오차에 미치는 영향에 대한 연구)

  • Lee, Ju-Yeon;Moon, Sang-Gon;Moon, Seok-Pyo;Kim, Su-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.36-42
    • /
    • 2021
  • This study was conducted to analyze the effect of the gear specification and gear quality corresponding to the macro geometry on the gear transmission error. The two pairs of gears with large and small transmission errors were selected for calculation, and two pairs of gears were manufactured with different gear quality. The test gears were manufactured by two different gear specifications with ISO 5 and 8 gear quality, respectively. The transmission error measurement system consists of an input motor, reducer, encoders, gearbox, torque meter, and powder brake. To confirm the repeatability of the test results, repeatability was confirmed by performing three repetitions under all conditions, and the average value was used to compare the transmission error results. The transmission errors of the gears were analyzed and compared with the test results. When the gear quality was high, the transmission error was generally low depending on the load, and the load at which the decreasing transmission error phenomenon was completed was also lower. Even when the design transmission error according to the gear specification was different, the difference of the minimum transmission error was not large. The transmission error at the load larger than the minimum transmission error load increased to a slope similar to the slope of the analysis result.