• 제목/요약/키워드: machining mechanism

검색결과 286건 처리시간 0.025초

엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구 (Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation)

  • 이상규;고성림
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

큰 외란이 존재하는 CNC 이송 구동계를 위한 적응 퍼지논리 제어기 (Self-Organizing Fuzzy Logic Controller for CNC Feed Drive Systems with Large Disturbances)

  • 지성철
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.180-192
    • /
    • 1998
  • This paper introduces a new self-organizing fuzzy logic controller (SOFLC) for precision contour machining in the presence of large disturbances which adjusts both input and output membership functions simultaneously. The parameters of the proposed controller are self-tuned in real-time according to a continuous measurement of the performance of the controller itself and estimated disturbance values. The proposed controller as well as a conventional fuzzy logic controller and a PID controller were simulated and implemented on a 3-axis milling machine in contour milling. Both the simulations and experiments show that the self-organizing fuzzy logic controller has superior performance in terms of contour tracking accuracy compared with the other two controllers.

  • PDF

펀칭 효과를 고려한 허브홀의 파단 예측기법 개발 (Development of the technique for prediction of the hub-hole crack with the punching effect)

  • 이종섭;고윤기;허훈;김홍기;박성호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.362-365
    • /
    • 2005
  • The hub hole is usually formed with a flanging process followed by a blanking process of a ]tole. Since the hole is made by blanking, the blanked surface is so rough that the formability in the region is rather poor. The emerging task is to identify the formability of the blanked region in the forming simulation and to relate the criterion to the real forming process by experiments. In this paper, hole expansion tests are carried out with respect to various hole conditions to verify the hole condition effect on the hole expansion ratio. The hole of specimens is made by machining or punching. In the case of punching, two different punching clearances are used for making the hole. From the results of test, fracture mechanism of the hole expansion is explained.

  • PDF

마이크로 렌즈 연삭기용 주축설계 및 제작에 관한 기초연구 (A Basic Study of High Precision Spindle Design for Micro-Glass Lens Grinding)

  • 김의중;한정훈;박상일;송승훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.57-60
    • /
    • 2002
  • The high precision spindle is essential fer mass and low cost production of aspherical glass lens. Especially, in the grinding process of micro glass lens the performance of the spindle determine the machined surface quality. For the aspheric micro glass lens grinding, we design and make a high precision spindle. We use air bearings for high speed and low motion errors of the spindle. And the driving mechanism is an air turbine to remove heat generation. In this study, we make basic performance requirements of the spindle through benchmarking. And we confirm the requirements by basic machining test. We test air consumption, static stiffness, run-out and vibration of the spindle.

  • PDF

원격운용 초고속 HMC 개발

  • 김기태;최재우;주혁
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.456-461
    • /
    • 2002
  • Nowadays, there are required more speed and accurate machining in order to improve the productivity through the reduction of cutting and non-cutting time. In this study, the high-speed HMC is specially designed to do remote control and high-speed mechanism with 30000rpm, 50000rpm, 40m/min, 100m/min and bridge type structure. Every structural deformation and vibration that is generated from all of factor is analyzed being based on the virtual manufacturing technologies: thermal characteristic analysis, machine-ability, tool wear measuring system, driving characteristic of linear motor and so on. As the application of these results had been consisted of three axes to move slight and rigid finally. Therefore, table errors that are resulted in change of work weight can be removed.

  • PDF

양방향성 형상기억합금을 이용한 공작물 척킹장치: 유용성 검증 (Workpiece-Chucking Device Using Two-Way Shape Memory Alloys: Feasibility Test)

  • 신우철;노승국;박종권
    • 한국생산제조학회지
    • /
    • 제18권5호
    • /
    • pp.462-468
    • /
    • 2009
  • In this study, a workpiece-chucking device that generates a chucking force from a shape memory alloy is introduced. This paper first presents train procedure to transform a commercial one-way shape memory alloy into a two-way shape memory alloy, which makes unclamping mechanism of the chucking device simpler than that using the one-way shape memory alloy Second, it describes a conceptual design of the workpiece-chucking device using the two-way type shape memory alloy. Third, it presents a prototype and its chucking characteristics, such as time-response of clamping/unclamping operations and a relationship between temperatures and chucking forces. Finally, it describes a mill-machining test conducted with the prototype. The results confirm that the proposed workpiece-chucking device is feasible for micro machine-tools.

  • PDF

고속주축용 라비린스 시일의 형상설계에 관한 연구 (A study on Geometry of Labyrinth Seal for High Speed Machining Center)

  • 나병철;전경진;한동철
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.56-62
    • /
    • 1997
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. High speed spindles require non-contact type sealing mechanism. In this study, an optimum seal design to minimize leakage is concerned in the aspect of flow control. This paper categorizes geometries of mostly used non-contact type seals and analyzes each leakage characteristics to minimize a leakage on sealing area. Effect of minimum clearance and its position are considered according to variation of detail geometry. The estimation of non-leaking property is determined by amount of pressure drop in the leakage path assuming constant leakage flow. To simulate an oil jet or oil mist type high speed spindle lubrication, the working fluid is regarded as two phases that are mixed flow of oil phase and air phase. Both of the turbulence and the compressible flow model were introduced in CFD(Computational Fluid Dynamics) analysis. Design parameters has been induced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted.

선삭가공에 있어서 탄소섬유 에폭시 복합재료의 절삭 특성 (Machinability of Carbon Fiber Epoxy Composites in Turning)

  • 김기수;이대길;곽윤근;남궁석
    • 한국정밀공학회지
    • /
    • 제8권1호
    • /
    • pp.63-73
    • /
    • 1991
  • Carbon fiber epoxy composite materials are widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in aircraft structures or machine elements, accurate surfaces for bearing mounting or joints must be provided, which require precise machining. In this paper, the machinability of the carbon fiber epoxy composite materials in turning was experimentally investigated. The cutting mechanism and the Taylor Tool Wear constants were determined and the surface roughness was measured w.r.t. cutting speeds and feed rates.

  • PDF

시계열 모델과 상관차원 해석을 통한 공구수명의 감시 (Monitoring of Tool Life through AR Model and Correlation Dimension Analysis)

  • 김정석;이득우;강명창;최성필
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.189-198
    • /
    • 1998
  • Recently, monitoring of tool life is a matter of common interesting because tool life affects precision, productivity and cost in machining process. Especially flank wear has a direct effect on cutting mechanism, so the various pattern of cutting force is obtained experimentally according to variation of wear condition. By investigating cutting force signal, AR(Autoregressive) modeling and correlation dimension analysis is conducted in turning operation. In this modeling and analysis, we extract features through 6th AR model, correlation integral and normalized correlation integral. After the back-propagation model of the neural network is utilized to monitor tool life according to flank wear. As a result. a very reliable classification of tool life was obtained.

  • PDF

자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석 (An analysis of cutting process with ultrasonic vibration by ARMA model)

  • I.H. Choe;Kim, J.D.
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF