• Title/Summary/Keyword: machining load

Search Result 179, Processing Time 0.03 seconds

Characteristics of Chemical-assisted Ultrasonic Machining of Glass (화학적기법을 이용한 유리의 초음파가공 특성)

  • Kim, B.H.;Jeon, S.K.;Kim, H.Y.;Jeon, B.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1349-1354
    • /
    • 2003
  • Ultrasonic Machining process is an efficient and economical means of precision machining on glass and ceramic materials. However, the mechanics of the process with respect to crack initiation and propagation, and stress development in the ceramic workpiece subsurface are still not well understood. In this research, we investigate the basic mechanism of chemical assisted ultrasonic machining(CUSM) of glass through the experimental approach. For the purpose of this study, we designed and fabricated the desktop micro ultrasonic machine. The feed is controlled precisely by using the constant load control system. During the machining experiment, the effects of HF(hydrofluoric acid) characteristics and machining condition on the surface roughness and the material removal rate are measured and compared.

  • PDF

A Study on the Gap Voltage and Machining Stability in Diesinking Electrical Discharge Machining (형조 방전가공에서 극간 전압과 가공 안정성에 관한 연구)

  • 김광열;이상민;이건기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.429-436
    • /
    • 2003
  • The electrical discharge machining(EDM) with Si electrode instead of Gr or Cu electrode. made enormous effects on the surface. machining time, anti-caustic workpiece surface and so on In this paper. we experimented on the inter-role distance during discharge the electrical phenomenon of inter-pole, the distribution of discharge point. the distribution of off load time. etc., using Si electrode Cu electrode and Gr electrode under the same machining condition. As a result of a large quantity generated exclusive powders. the performance of the EDM using Si electrode. compared with EDM using others. is improved. We show that the quantities of those make far pole-gap discharge and discharge scatter under stable machining status possible.

A Study on the Virtual Machining CAM System : Prediction and Experimental Verification of Machined Surface (실 가공형 CAM 시스템 연구: 가공형상의 예측 및 실험 검증)

  • 김형우;서석환;신창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.961-964
    • /
    • 1995
  • For geometric accuracy in the net shape machining, the problem of tool deflection should be resolved in some fashion. In particular, this is crucial in finish cut operation where slim tools are used. The purpose of this paper is to verify the validity and effectiveness of the prediction model of the machined surface. Experimental results are presented for the cut of steel material with HSS endmill of diameter 6mm on machining center. The results shows that 1) the machining error due totool deflection is serious even in the low cutting load, 2) by using the mechanistic simulation model with experimental coefficients, the machining error was predicted with maximum prediction error of 10% which was significantly reduced to the desired level by the path modification method.

  • PDF

A Study on the Characteristics to working Condition of STD11 in Wire-Cut EDM (Wire-Cut EDM에서 가공조건에 따른 STD11의 가공특성에 관한 연구)

  • Lee, Hong-Gil;Kim, Won-Il;Lee, Yun-Kyung;Wang, Duk-Hyun;Kim, Jong-Up
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.5-12
    • /
    • 2005
  • In wire discharge machining which is using STD 11 as die materials, the major factors of machining speed are discharge voltage, discharge current, and discharge time. All of the three factors give the effect. Increasing of the discharge pulse time gets groove width wider and it relatively increases surface roughness and clearance. If no load voltage is decreased, surface roughness is good but it decreases machining speed. If on time is increased, machining speed will get faster and clearance and offset value also get bigger.

  • PDF

Cycle Reduction Simulation for Turning Process (선삭 가공 사이클 단축 시뮬레이션)

  • Kim, Sun-Ho;Cho, Hang-Deuk;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Productivity of machining using machine tools is affected by cutting conditions such as cutting speed, feedrate and depth. However, undesirable conditions that lengthen the machining cycle and shorten the tool life occur frequently because determination of cutting condition is known to depend on human experience. This paper presents a method of cycle reduction by removing undesirable conditions. For cycle reduction, maximum cutting load is determined using commercial FEM simulation code. The feedrate in the NC program is altered based on a predetermined cutting load value. To make a decision on the proposed effectiveness, a simulation is performed for the brake hub parts of an automobile. From the evaluation, it was found that the cycle reduction was under 15%.

Study on Optimized Machining of Duralumin using AFC (AFC를 이용한 두랄루민의 최적화 가공에 관한 연구)

  • Kang, Min-Seog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Studies on the optimizations of machining processes use two different methods. The first is feed control in real-time by spindle load in a machine tool. The second is feed scheduling in NC code control by material removal rate using a CAD/CAM system. Each approach possesses its respective merits and issues compared to the other. That is, each method can be complementary to the other. The purpose of the study is to improve the productivity of the bulkhead, an aircraft Duralumin structure. In this paper, acceleration or deceleration of cutting tool by spindle load data is achieved using adaptive feed control macro programming in a machine tool.

A Study on the Fabrication and Evaluation of Burnishing Drills for Aluminum Hole Making (알루미늄 홀 가공용 버니싱 드릴의 제작 및 평가에 관한 연구)

  • Ha, Jeong-Ho;Kim, Dong-Gyu;Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.53-63
    • /
    • 2022
  • Recently, the use of aluminum components in the reduction of the vehicle weight to improve fuel efficiency and reduce carbon dioxide emissions has increased. In the aluminum machining cutting process, hole-making is an important process that accounts for 30% of the machining process. Although many studies have been conducted using the continuously advancing hole processing technology, studies on the machinability of the tool depending on the type of chuck on the workpiece are still lacking. In this study, the machining performance of cemented carbide burnishing drills was compared and analyzed according to chuck type. The burnishing drill was used to create a hole in the AL6061 workpiece, and the surface roughness and dimensional accuracy of the hole were examined according to the type of chuck while monitoring the spindle load.

Design of a High Stiffness Machining Robot Arm with Double Parallel Mechanism (기계가공작업을 위한 강성이 큰 2단 평행구조 로보트 암 설계)

  • 이민기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.22-37
    • /
    • 1995
  • Industrial robot has played a central role in the production automation such as welding, assembling, and painting. There has been, however, little effort to the application of robots in machining work(grinding, cutting, milling, etc.) which is typical 3D work. The machining automation requires a high stiffness robot arm to reduce deformation and vibration. Conventional articulated robots have serially connecting links from the base to the gripper. So, they have very weak structure for he machining work. Stewart Platform is a typical parallel robotic mechanism with a very high stiffness but it has a small work space and a large installation space. This research proposes a new machining robot arm with a double parallel mechanism. It is composed of two platforms and a central axis. The central axis will connect the motions between the first and the second platforms. Therefore, the robot has a large range of work space as well as a high stiffness. This paper will introduce the machining work using the robot and design the proposed robot arm.

The Evaluation of Performance of 2-Axis Polishing Robot Attached to Machining Center (머시닝센터 장착형 2축 연마 로봇의 성능평가)

  • 박준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.411-416
    • /
    • 2000
  • Cutting process has been automated by progress of CNC and CAD/CAM, but polishing process has been depended on only experiential knowledge of expert. To automate the polishing process, a polishing robot with w degrees of freedom which is attached to a machining center with 3 degrees of freedom has been developed. This automatic polishing robot is able to keep the polishing tool normal on the curved surface of die to improve a performance of polishing. Polishing task for a curved surface die demands repetitive operation and high precision, but conventional control algorithm can not cope with the problem of disturbance such as a change of load. In this research, a new sliding mode control algorithm is applied to the robot. The signal compression method is used to identify polishing robot system. to obtain an effect of 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 axes machining center is divided into data of two types for 3 axes machining center and 2 axes polishing robot. To evaluate polishing performance of the robot. various experiments are carried out.

  • PDF

Characterization of the Chemical Mechanical Micro Machining for Single Crystal Silicon (실리콘의 화학기계적 미세가공 특성)

  • Jeong, Sang-Cheol;Park, Jun-Min;Lee, Hyeon-U;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.186-195
    • /
    • 2002
  • The mechanism of micro machining of reacted layer on silicon surface were proposed. The depth of reacted layer and the change of mechanical property were measured and analyzed. Depth of hydrated layer which is created on the surface of silicon by potassium hydrate was analyzed with SEM and XPS. The decrease of the micro victors hardness of silicon surface was shown with the increase of the concentration of potassium hydrate and the change of the dynamic friction coefficient by chemical reacted layer was measured due to the readiness of machining. The experiment of groove machining was done with 3-axis machine with constant load. With chemical mechanical micro machining the surface crack and burrs generated by both brittle and ductile micro machining were diminished. And the surface profile and groove depth was shown in accordance with the machining speed and reaction time with SEM and AFM.