• Title/Summary/Keyword: machined surface

Search Result 737, Processing Time 0.031 seconds

A Study on the Spindle Run-out Effects on Cutter Mark and Surface Roughness (주축 런아웃이 절삭흔과 표면거칠기에 미치는 영향에 관한 연구)

  • Hwang, Young-Kug;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.84-91
    • /
    • 2007
  • The radial error motion of a machine tool cutter/spindle system is critical to the dimensional accuracy of the parts to be machined. This paper presents an investigation into spindle run-out effects on cutting mark and surface roughness. We experimented the effects of spindle run-out on surface roughness in flat-end milling by cutting AL 7075 workpiece in various cutting conditions. In order to analyze the effects of run-out on the surface roughness, the spindle's radial error motions was measured by mounting a sphere target onto the spindle as a reference. From the experimental results, it was found that spindle un-out makes a directive effects on surface roughness in flat-end milling.

Improvement of the Surface Roughness by Changing Chamfered Angle of the Insert in Face Milling (정면밀링가공에서 인서트의 챔퍼각 변화에 의한 표면거칠기 향상)

  • Kwon, Won-Tae;Lee, Seong-Sei
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.155-160
    • /
    • 2001
  • A milling process with 45 degree chamfered inserts produces a perfect flat surface only in theory. It is due to many unwanted factors including thermal effect, dynamic effect, the problem of the controller used and the problem of accuracy of the machine tool. In this study, introduced is a method to improve the surface roughness by redesigning of the chamfer angle of the insert, which traditionally has been 45 degree. First, the relationship between the fixed machine coordinate and the relative coordinate on the insert is derived. This transfer matrix is used to determine the new insert angle to maximize the flatness of the machined surface. A newly designed insert is manufactured, and used to carry out the experiment. It is proved that she insert designed by the proposed method produced a much flatter surface than a traditional one.

  • PDF

The Effect of Various Cutting Conditions on the Surface Roughness of SM45C Materials (SM45재의 선삭조건이 펴면거칠기에 미치는 영향)

  • 안영호;박창언;정영재;손준식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.482-486
    • /
    • 1995
  • Generally, a great deal of attention is given to the maintenance of consistent surface roughness. Therefore one of the major goals of research in this area has been the development of models which can predict the surface roughness obtainable on a machined metal part over the simultaneous variation of cutting condition. A comparison is also made between the theoretical and actual values of surface roughness to calculate the overall variance in the developed models, Mathematical models developed from the experimental data in the course of this work can be employed to control the cutting conditions in order to achieve the desired surface roughness and deep quality.

  • PDF

Adjustment Algorithm of Incident Light Power for Improving Performance of Laser Surface Roughness Measurement (레이저 표면 거칠기 측정 성능 향상을 위한 입사 광강도 조정 알고리즘)

  • 서영호;김화영;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.79-87
    • /
    • 2004
  • The light pattern reflected from a machined surface contains some information like roughness and profile on the projected surface as expected in the Beckmann-Spizzichino model. In applying the theory into a real reliable measuring device, many parameters such as incident light power, wave length, spot size should be kept a constant optical value. However, the reflected light power is likely to change with the environmental noise, the variations of the light source, the reflectivity of the surface, etc. even though the incident light power is constant. In this study, a method for adjusting the incident light power to keep the reflected light power projected on a CMOS image sensor constant was proposed and a simple adjustment algorithm based on PI digital control was examined. Experiments verified that the proposed method made the surface roughness measurement better and more reliable even under variations of the height of light source.

A study on surface fatigue crack behavior of SS400 weldment (SS400 용접부의 표면피로균열거동에 관한 연구)

  • 이용복;조남익;박강은
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.90-95
    • /
    • 1996
  • In order to investigate characteristics of surface fatigue crack propagation from a pit shaped surface defect which frequently exists around welded joints, SS400 steel with thickness of 12mm, which has been generally used for structure members, was welded with submerged-arc butt type and machined for both surface. An initial surface defect of pit shape with the aspect ratio of 2 was made on the specimen. The initial defect was located at 5 different zones over the weldment : weld metal zone, boundary between weld metal and HAZ, HAZ, boundary between HAZ and base metal. Characteristics of surface fatigue crack propagation from the defect on each region under the same loading condition were investigated and compared.

  • PDF

A five-axis CAM system for free-surface grinding (금형연마작업을 위한 5축 CAM 시스템)

  • 서석환;이민석;김두형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1024-1030
    • /
    • 1993
  • In manufacturing press die with free surface, grinding operation is an important post process for surface finish and dimensional accuracy. With the advancement of NC technology. surface grinding operation is increasingly replaced by the gantry type manipulator. As the mechanics for grinding operation is different from machining operation, conventional CAM system for machining operation is hard to apply. In this. paper, we develop a five-axis CAM system by which an efficient gantry trajectory can be planned and verified. The developed system consists of four conceptual modules; namely CAD, PROCESS. CAM, and ANALYSIS. In the CAD module, the machined surface is represented by CL-data or surface modeler, and process parameters are specified by the PROCESS module. Then, the CAM module generates a series of grinding paths based on the grinding mechanics together with process databases for tool spaces and grinding conditions. The generated paths are verified via ANALYSIS module. Validation via real experiments is left for further study.

  • PDF

A Study on the Effect of Tool Thermal Deformation on Surface Profiles for Turing Process (선삭에서 공구열변형이 표면 형상에 미치는 영향에 관한 연구)

  • 염철만;신근하;홍민성
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.33-39
    • /
    • 2001
  • During the turning of the workpiece, cutting heat causes thermal deformation of the cutting tool which influences the surface characteristics of the machined part. This paper presents a study of thermal deformation of the cutting tool. For this purpose, cutting tool is modeled based of Pro/Engineering and the thermal deformation is simulated by means of the finite element method. The thermal effect on the surface roughness profile is simulated by using surface-shaping system. It has been shown that the results of simulation are similar to those of experiment.

  • PDF

A Study on Confocal Microscope for A Precise 3-Dimensional Surface Measurement (물체표면의 3차원 정밀형상측정을 위한 공초점 현미경에 관한 연구)

  • 송대호;안중근;강영준;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.233-236
    • /
    • 1997
  • In modem industry, the accuracy and the surface-finish requirements for machined parts have been becoming ever more stringent. Optical method in measurements is playing an important role in vibration measurement, crack and defect detection and surface topography with the advent of opto-mechatronics. In this study, the principle of the general confocal microscope is introduced for surface measurement, and the advanced confocal microscope that has better measuring speed than the traditional confocal microscope is developed. A study on improving the resolution of the advanced confocal microscope is followed. Finally, Software for data acquisition and analysis of various parameters in surface geometrical features has been developed.

  • PDF

Multi-axis Milling for Micro-texturing

  • Kobayashi, Yoshikazu;Shirai, Kenji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.34-38
    • /
    • 2008
  • The surface texture of a product is generally produced by etching or sandblasting. However, these techniques have problems related to repeatability and environmental pollution. Since current milling machines can produce small parts at the micrometer or nanometer level, the resolution of milling exceeds the manufactured dimensions of the surface texture produced by etching or sand-blasting. A method for generating surface texture by milling is proposed and demonstrated. The proposed method was demonstrated by actual milling using a three- or five-axis control machine, and the machined surface texture was measured with an interferometer to allow comparison with the designed shape. The measurement results demonstrate that the proposed method can generate a wide-area surface texture with good machining repeatability.

Uniform Scallop Height Tool Path Generation Using CL Surface Deformation (CL면 변형 방법을 이용한 균일한 조도의 공구 경로 생성)

  • Yang Min-Yang;Kim Su-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.895-903
    • /
    • 2005
  • In this paper, we present a cutter location (CL) surface deformation approach for constant scallop height tool path generation from triangular mesh. The triangular mesh model of the stereo lithography (STL) format is offset to the CL surface and then deformed in accordance with the deformation vectors, which are computed by the slope and the curvature of the CL surface. In addition, the tool path which is computed by slicing the deformed CL surface is inversely deformed by those same deformation vectors to a tool path with a constant scallop height. The proposed method is implemented, and a tool path generated by the proposed method is tested by simulation and by numerical control (NC) machining. The scallop height was found to be constant over the entire machined surface, demonstrating much better quality than that of mesh slicing, under the same constraints for machining time.