• 제목/요약/키워드: machine-tool spindle

검색결과 388건 처리시간 0.028초

공작기계 주축 거동시 온도분포 특성에 관한 연구 (A Study on the Thermal Distribution Analysis of Operational Spindle System of Machine Tool)

  • 임영철;김종관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.980-984
    • /
    • 2002
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design condidering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verified the test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirm approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective method in thermal-appropriate design.

  • PDF

공작기계 주축 테이퍼 결합부 정강성에 관한 연구 (A Study on the Static Stiffness in the Main Spindle Taper of Machine Tool)

  • 김배석;김종관
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.15-20
    • /
    • 2001
  • This paper presents the experimental study of the static stiffness for the BT shank(7/24 long taper) and the HSK tool shank(1/10 short taper) in the main spindle taper of machine tool. The static stif71ess test was performed under different experimental conditions. It is turned out that the effective axial drawing force is larger than 6kN in the 7/24 test tool shank and BkN in the 1/10 test tool shank. As a test result, considering that the actual drawing force of the machining center is about 1300k2f and axal drawing force 12kN is equivalent amount as a 1220kgf, it is turned out that 1/10 test tool shank superior to 7/24 test tool shank in the static stiffness.

  • PDF

가상공작기계를 이용한 5축 가공 시 공작기계의 간섭현상에 관한 연구 (A Study on Interference Phenomenon of a Machine Tool when 5 Axises Working with Virtual Machine Tool)

  • 김해지;장정환;김남경
    • 한국기계가공학회지
    • /
    • 제4권2호
    • /
    • pp.16-23
    • /
    • 2005
  • This study is intended to find out the reason of interference phenomenon of a machine tool when it operates for 5-axises working. The researcher made a Virtual Machine which has same figures of the 5 axises machine tool and Virtual Manufacturing System which has both Software factors - controller and NC code data to manipulate the movement characteristics of the machine - and Hardware factors - fixtures, workpiece, tools, holders and so on. With these virtual tools, this study is designed to find out the relation between the movement and the interference or collision, and also intended to verify the simulation and work-processing. In this study, the researcher found out, in case of the vertical 5 axises type, that it has more chances to have interference between the fixture, the workpiece and the main spindle including the tool holder due to the tilting kinetics of the main spindle. In case of the horizontal 5 axises type, on the other hand, the researcher found out that it has more possibility to have the interference between the main spindle and the rotary shaft.

  • PDF

고정밀 공작기계 주축계의 냉각특성에 관한 연구 (A Study on the Coling Charaacteristics of a High Precision Machine Tool spindle)

  • 김수태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.12-17
    • /
    • 1997
  • Unsteady-state temperature distributions and thermal deformations of a high presision spindle are stueied in this paper. Thress dimensional model is built for analysis, and the amount of heat transfer coefficient are estimated. Temperature distributions and thermal deformations of a model are analyzed using the finite element method and the thermal boundary values. Numerical results are compared with the measured data. The results show that the thermal deformations and the temperature distributions of a high precision machine spindle can be reasonably estimated using the three dimensional model and the finite element method, and that the temperature rise by the heat generation of the bearing is effectively lowered by cooling of the shaft and the housing of a machine tool spindle.

  • PDF

반구상의 볼바측정을 통한 스핀들 열변형 오차 측정 (Measurement of Spindle Thermal Errors in a Machine Tool Using Hemispherical Ball Bar Test)

  • 양승한;김기훈
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1359-1367
    • /
    • 2001
  • Improvement of machine tool accuracy is an essential part of quality control in manufacturing process. Among of all the errors of a particular machine tool, the thermal errors of the spindle have a notably significant effect on machining accuracy and have a direct influence upon both the surface finish and geometric shape of the finished workpiece. Therefore, this paper proposed new measurement method for thermal errors of the spindle in machine tools. The thermal errors are measured by a ball bar system instead of capacitance sensor system. The novel measurement method using ball bar system is more efficient, easier to use than conventional measurement system. And also the ball bar system is possible to measure both geometric errors and thermal errors at the same time.

원통형 주축 변위 센서를 이용한 고속 밀링 가공 상태 감시 (A Cylindrical Spindle Displacement Sensor and its Application on High Speed Milling Machine)

  • 김일해;장동영
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.108-114
    • /
    • 2007
  • A new cutting force estimating approach and machining state monitoring examples are presented which uses a cylindrical displacement sensor built into the spindle. To identify the tool-spindle system dynamics with frequency up to 2 kHz, a home-built electro-magnetic exciter is used. The result is used to build an algorithm to extract the dynamic cutting force signal from the spindle error motion; because the built-in spindle sensor signal contains both spindle-tool dynamics and tool-workpiece interactions. This sensor is very sensitive and can measure broadband signal without affecting the system dynamics. The main characteristic is that it is designed so that the measurement is irrelevant to the geometric errors by covering the entire circumferential area between the target and sensor. It is also very simple to be installed. Usually the spindle front cover part is copied and replaced with a new one with this sensor added. It gives valuable information about the operating condition of the spindle at any time. It can be used to monitor cutting force and chatter vibration, to predict roughness and to compensate the form error by overriding spindle speed or feed rate. This approach is particularly useful in monitoring a high speed machining process.

고정밀 회전체의 불평형 변동에 따른 회전정밀도 영향에 관한 연구 (A Study on the Rotation Accuracy According to Unbalance Variation of High Precision Spindle Unit for Machine Tool)

  • 김상화;김병하;진용규
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.174-181
    • /
    • 2012
  • The spindle unit is a core part in high precision machine tool. Rotation accuracy of spindle unit is needed for high dignity cutting and improving the performance of machine tool. However, there are many factors to effect to rotational error motion(rotation accuracy). This study studied how rotational error motion is variation when unbalance amount is variation. Rotation accuracy of initial spindle unit is decided depending on parts and assembly such as bearing. When it is rotation, vibration and noise is appeared depending on volume of unbalance amount, so it works to decrease unbalance amount. The purpose of the study tests that unbalance amount how much effects to initial rotation condition. The result of the study shows that accuracy of parts and assembly is highly necessary to reach high rotation accuracy and unbalance amount hardly effects to initial rotation accuracy. However, it shorten spindle's life because vibration and noise is increasing by increasing unbalance amount and we can expect situation that rotation accuracy is falling by long time operation.

DETECTING AND CORRECTING UNBALANCE IN TOOLHOLDERS

  • Layne, Michael H.
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 Handout for 2000 Inter. Machine Tool Technical Seminar
    • /
    • pp.35-49
    • /
    • 2000
  • Over the past ten years we have wethnessed a revolution in metalcutting in the field of High Speed Machining. As machining speeds continue to increase, particularly spindle RPM, forces created by unbalance in the spindle, cutting tool, and toolholder require close attaention. It has been observed that these forces, if left uncompensated, can results in poor surface finish, loss of tool life, and spindle bearing failure. The sources of this unbalance needs to be identified and elimated in order to create a smooth, vibration free condition and allow the machine tool and its spindle to operate properly.

  • PDF

페룰 가공용 고정밀 주축시스템 설계 (Design of High Precision Spindle System for Ferrule Grinding Machine)

  • 편영식;박정현;이건범;요꼬이요시유끼;여진욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.15-19
    • /
    • 2002
  • With the rapid development of industrial technologies, the demand for high precision products has been increasing drastically. For this reason, the need for developing of high performance machine tool, which can ensure high precision, is desired in the industrial fields. Technologies on the spindle system manufacture, guideway manufacture, error compensation, design of bed structure, protection against vibrations, and system integration are core technology for developing of high precision machine tools. Especially, among these, design of spindle system, which is leading precision and manufacturing technique. is one of the most important technologies. A high speed and high precision spindle system, which will be used for final machining of ferrule, is designed considering the effect caused by thermal, cutting torque, cutting farce, and work-piece materials. The detail process of analysis is presented.

  • PDF

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF