• 제목/요약/키워드: machine-learning method

검색결과 2,058건 처리시간 0.027초

Investigation of Topographic Characteristics of Parcels Using UAV and Machine Learning

  • Lee, Chang Han;Hong, Il Young
    • 한국측량학회지
    • /
    • 제35권5호
    • /
    • pp.349-356
    • /
    • 2017
  • In this study, we propose a method to investigate topographic characteristics by applying machine learning which is an artificial intelligence analysis method based on the spatial data constructed using UAV and the training data created through spatial analysis. This method provides an alternative to the subjective judgment and accuracy of spatial data, which is a problem of existing topographic characteristics survey for officially assessed land price. The analysis method of this study is expected to improve the problems of topographic characteristics survey method of existing field researchers and contribute to more accurate decision of officially assessed land price by providing more objective land survey method.

웨어러블 동작센서와 인공지능 학습모델 기반에서 행동인지의 개선 (Improvement of Activity Recognition Based on Learning Model of AI and Wearable Motion Sensors)

  • 안정욱;강운구;이영호;이병문
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.982-990
    • /
    • 2018
  • In recent years, many wearable devices and mobile apps related to life care have been developed, and a service for measuring the movement during walking and showing the amount of exercise has been provided. However, they do not measure walking in detail, so there may be errors in the total calorie consumption. If the user's behavior is measured by a multi-axis sensor and learned by a machine learning algorithm to recognize the kind of behavior, the detailed operation of walking can be autonomously distinguished and the total calorie consumption can be calculated more than the conventional method. In order to verify this, we measured activities and created a model using a machine learning algorithm. As a result of the comparison experiment, it was confirmed that the average accuracy was 12.5% or more higher than that of the conventional method. Also, in the measurement of the momentum, the calorie consumption accuracy is more than 49.53% than that of the conventional method. If the activity recognition is performed using the wearable device and the machine learning algorithm, the accuracy can be improved and the energy consumption calculation accuracy can be improved.

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.

Parameterization of the Company's Business Model for Machine Learning-Based Marketing Stress Testing

  • Menkova, Krystyna;Zozulov, Oleksandr
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.318-326
    • /
    • 2022
  • Marketing stress testing is a new method of identifying the company's strengths and weaknesses in a turbulent environment. Technically, this is a complex procedure, so it involves artificial intelligence and machine learning. The main problem is currently the development of methodological approaches to the development of the company's digital model, which will provide a framework for machine learning. The aim of the study was to identify and develop an author's approach to the parameterization of the company's business processes for machine learning-based marketing stress testing. This aim provided the company's activities to be considered as a set of elements (business processes, products) and factors that affect them (marketing environment). The article proposes an author's approach to the parameterization of the company's business processes for machine learning-based marketing stress testing. The proposed approach includes four main elements that are subject to parameterization: elements of the company's internal environment, factors of the marketing environment, the company' core competency and factors impacting the company. Matrices for evaluating the results of the work of expert groups to determine the degree of influence of the marketing environment factors were developed. It is proposed to distinguish between mega-level, macro-level, meso-level and micro-level factors depending on the degree of impact on the company. The methodological limitation of the study is that it involves the modelling method as the only one possible at this stage of the study. The implementation limitation is that the proposed approach can only be used if the company plans to use machine learning for marketing stress testing.

Human Face Recognition using Multi-Class Projection Extreme Learning Machine

  • Xu, Xuebin;Wang, Zhixiao;Zhang, Xinman;Yan, Wenyao;Deng, Wanyu;Lu, Longbin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제2권6호
    • /
    • pp.323-331
    • /
    • 2013
  • An extreme learning machine (ELM) is an efficient learning algorithm that is based on the generalized single, hidden-layer feed-forward networks (SLFNs), which perform well in classification applications. Many studies have demonstrated its superiority over the existing classical algorithms: support vector machine (SVM) and BP neural network. This paper presents a novel face recognition approach based on a multi-class project extreme learning machine (MPELM) classifier and 2D Gabor transform. First, all face image features were extracted using 2D Gabor filters, and the MPELM classifier was used to determine the final face classification. Two well-known face databases (CMU-PIE and ORL) were used to evaluate the performance. The experimental results showed that the MPELM-based method outperformed the ELM-based method as well as other methods.

  • PDF

Utilization of Simulation and Machine Learning to Analyze and Predict Win Rates of the Characters Battle

  • Kang, Hyun-Syug
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권7호
    • /
    • pp.39-46
    • /
    • 2020
  • 최근, 대전 게임 분야에서, 가상 캐릭터들의 효과적인 설계를 위해 캐릭터의 승률을 효율적으로 예측할 수 있는 방법들이 매우 필요하다. 우리는 본 논문에서 이 문제를 해결하기 위해 시뮬레이션과 기계 학습을 결합하는 방법을 제안한다. 우선 대전 게임에서 가상 캐릭터의 대전 승률을 분석하기 위해서 시뮬레이션을 사용하고, 가상 캐릭터의 능력치에 따라서 승률을 예측하기 위해 회귀 모델에 기반한 기계 학습 기법을 적용한다. 제안한 기법으로 실험한 결과는 시뮬레이션 결과로 나온 승률과 기계 학습 기법이 예측한 승률이 거의 차이가 없다는 것을 확인하였다. 그리고 간단한 회귀 모델에 기반한 기계 학습으로도 실험에서 좋은 성능을 얻을 수 있었다.

악성 안드로이드 앱 탐지를 위한 개선된 특성 선택 모델 (Advanced Feature Selection Method on Android Malware Detection by Machine Learning)

  • 부주훈;이경호
    • 정보보호학회논문지
    • /
    • 제30권3호
    • /
    • pp.357-367
    • /
    • 2020
  • 2018년 시만텍 보고서에 따르면, 모바일 환경에서 변종 악성 앱은 전년도 대비 54% 증가하였고, 매일 24,000개의 악성 앱이 차단되고 있다. 최근 연구에서는 기존 악성 앱 분석 기술의 사용 한계를 파악하고, 신·변종 악성 앱을 탐지하기 위하여 기계학습을 통한 악성 앱 탐지 기법이 연구되고 있다. 하지만, 기계학습을 적용하는 경우에도 악성 앱의 특성을 적절하게 선택하여 학습하지 못하면 올바른 결과를 보일 수 없다. 본 연구에서는 신·변종 악성 앱의 특성을 찾아낼 수 있도록 개선된 특성 선택 방법을 적용하여 학습 모델의 정확도를 최고 98%까지 확인할 수 있었다. 향후 연구를 통하여 정밀도, 재현율 등 특정 지표의 향상을 목표로 할 수 있다.

Performance Comparison of Machine Learning Algorithms for Received Signal Strength-Based Indoor LOS/NLOS Classification of LTE Signals

  • Lee, Halim;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.361-368
    • /
    • 2022
  • An indoor navigation system that utilizes long-term evolution (LTE) signals has the benefit of no additional infrastructure installation expenses and low base station database management costs. Among the LTE signal measurements, received signal strength (RSS) is particularly appealing because it can be easily obtained with mobile devices. Propagation channel models can be used to estimate the position of mobile devices with RSS. However, conventional channel models have a shortcoming in that they do not discriminate between line-of-sight (LOS) and non-line-of-sight (NLOS) conditions of the received signal. Accordingly, a previous study has suggested separated LOS and NLOS channel models. However, a method for determining LOS and NLOS conditions was not devised. In this study, a machine learning-based LOS/NLOS classification method using RSS measurements is developed. We suggest several machine-learning features and evaluate various machine-learning algorithms. As an indoor experimental result, up to 87.5% classification accuracy was achieved with an ensemble algorithm. Furthermore, the range estimation accuracy with an average error of 13.54 m was demonstrated, which is a 25.3% improvement over the conventional channel model.

협동로봇의 건전성 관리를 위한 머신러닝 알고리즘의 비교 분석 (Comparative Analysis of Machine Learning Algorithms for Healthy Management of Collaborative Robots)

  • 김재은;장길상;임국화
    • 대한안전경영과학회지
    • /
    • 제23권4호
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.

Comparing automated and non-automated machine learning for autism spectrum disorders classification using facial images

  • Elshoky, Basma Ramdan Gamal;Younis, Eman M.G.;Ali, Abdelmgeid Amin;Ibrahim, Osman Ali Sadek
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.613-623
    • /
    • 2022
  • Autism spectrum disorder (ASD) is a developmental disorder associated with cognitive and neurobehavioral disorders. It affects the person's behavior and performance. Autism affects verbal and non-verbal communication in social interactions. Early screening and diagnosis of ASD are essential and helpful for early educational planning and treatment, the provision of family support, and for providing appropriate medical support for the child on time. Thus, developing automated methods for diagnosing ASD is becoming an essential need. Herein, we investigate using various machine learning methods to build predictive models for diagnosing ASD in children using facial images. To achieve this, we used an autistic children dataset containing 2936 facial images of children with autism and typical children. In application, we used classical machine learning methods, such as support vector machine and random forest. In addition to using deep-learning methods, we used a state-of-the-art method, that is, automated machine learning (AutoML). We compared the results obtained from the existing techniques. Consequently, we obtained that AutoML achieved the highest performance of approximately 96% accuracy via the Hyperpot and tree-based pipeline optimization tool optimization. Furthermore, AutoML methods enabled us to easily find the best parameter settings without any human efforts for feature engineering.