• 제목/요약/키워드: machine-learning method

검색결과 2,112건 처리시간 0.033초

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

과학기술분야 용어 간 관계추출 시스템의 평가를 위한 테스트컬렉션 구축 (Construction of Test Collection for Evaluation of Scientific Relation Extraction System)

  • 최윤수;최성필;정창후;윤화묵;류범종
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.754-758
    • /
    • 2009
  • 대용량 문서에서 포함된 정보를 추출하는 작업은 정보검색분야 뿐만 아니라 질의응답과 요약분야에서 매우 유용하다. 정보 추출 분야 중 관계추출 기술이 중요하게 인식되고 있으나, 기계학습모델을 기반으로 개발하기 위한 학습집합과 개발된 기술을 평가하기 위한 평가집합의 부재로 연구에 난항을 겪고 있다. 본 논문은 한국과학기술정보연구원(KISTI)이 보유하고 있는 해외학술지 데이터를 기반으로 과학기술용어에 대한 관계추출 기술 시스템을 개발하고 평가하기 위한 테스트 컬렉션(KREC2008) 구축을 위한 구축방법 및 절차를 기술한다. 해외 학술지 데이터의 초록을 대상으로 기술용어를 추출하였고, 기술용어의 쌍의 관계에 해당되는 단어를 Wordnet에 매핑하여 동사의 개념을 일반화하는 여러 개의 개념화된 후보군을 추출하였다. 평가기준 및 절차 교육이 이루어진 평가자가 개념화된 후보군에서 적합하다고 판단되는 "개념"을 "관계"로 지정하였다. Wordnet을 이용하여 "관계"에 대한 후보군을 생성하였기때문에, 일관성 있는 관계설정의 품질의 향상시켰고 비전문가도 쉽게 테스트컬렉션을 구축할 수 있는 방법을 제공하였다. 현재 KREC2008은 정보추출 연구자 및 개발자에게 공개되어 있으며, 과학기술분야 관계추출 시스템의 개발 및 신뢰도 평가를 목적으로 하는 학술대회의 연구결과 발표 및 제품 비교 등에 활용될 예정이다.

  • PDF

4차산업혁명과 한국대학의 역할 변화 (The 4th.industrial revolution and Korean university's role change)

  • 박상규
    • 융합정보논문지
    • /
    • 제8권1호
    • /
    • pp.235-242
    • /
    • 2018
  • 최근 각 언론, 기업계, 정부 유관기관 및 학계 등 많은 분야에서 4차 산업에 대한 관심이 폭발적으로 증가하였다. 특히 우리가 피부로 느낄 수 있는 분야인 인공지능이 인간능력을 이미 크게 앞서고 있다는 것을 깨닫고 나서 많은 사람들은 4차산업혁명이 실제로 우리 코 앞에 와있다는 것을 실감할 수 있었다. 이렇게 대부분 사람들의 생각보다 빠르게 다가온 4차산업을 어떻게 효율적으로 대응해야 할까? 특히 최근의 인공지능, 빅데이터, 무인자동차 및 유전자가위 등에 대한 상반된 견해들을 비교분석하는 방식으로 연구를 진행해 본다. 이러한 분석과 연구를 통하여 교육적, 정치적, 사회적, 윤리적 그리고 과학적 영향들을 파악해 본 결과, 현재까지 뚜렷하게 정립되어 있는 개념이나 체계, 시스템이 존재하지 않는다는 것을 이해할 수 있었고 오히려 4차산업혁명의 개념, 체계를 앞서서 정의하고 정립하는 국가나 기업, 개인들이 산업의 주도권을 확보할 수 있다는 것을 알게 되었다. 그러나 한국사회와 대학은 오히려 현재 2차산업혁명의 체계와 문화에서 머물러있는 듯한 모습을 보이고 있는데, 이러한 현실인식 위에서 새로운 산업혁명의 트렌드를 맞추어 따라갈 수 있는 방안들을 찾아 보고자 한다.

KNIME 분석 플랫폼 기반 스마트 미터 빅 데이터 클러스터링 (Clustering of Smart Meter Big Data Based on KNIME Analytic Platform)

  • 김용길;문경일
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.13-20
    • /
    • 2020
  • 빅 데이터 관련 주요 논제 중의 하나는 방대한 시간 기반 또는 원격 측정 데이터의 가용성에 관한 문제이다. 현재 저비용 획득 및 저장 장치의 등장은 더 세밀한 분석에 사용될 상세한 시간 데이터를 얻을 수 있어서 배후 시스템에 대해 여러 가지 지식을 갖거나 미래의 이벤트를 더 정확히 예측할 수 있다. 특히, 스마트 미터가 설치된 수많은 가정 및 기업 등을 대상으로 전기 사용에 관한 고객 맞춤형 계약을 정의하는 것은 다른 무엇보다도 중요한 문제이다. 수많은 스마트 미터 데이터를 바탕으로 공통적인 전력 소비 형태를 몇 가지 그룹으로 구분할 필요가 있다. 이에 본 연구에서는 스마트 미터 측정 관련 공개 데이터와 자바 기반 공개 소스인 KNIME 플랫폼을 사용하여 스마트 미터 관련 빅 데이터 변환과 클러스터링을 나타낸다. 빅 데이터 구성 요소는 공개 소스는 아니지만, 시험판으로 사용할 수 있다. 스마트 미터 빅 데이터를 가져오고, 정리하고, 변환한 후 전력 사용량 행위와 관련된 각 미터 ID의 해석과 클러스터링에 적합한 DTW 접근 방식을 통해 전력 사용 행위에 관한 스마트 계약을 정의할 수 있다.

Current status and future plans of KMTNet microlensing experiments

  • Chung, Sun-Ju;Gould, Andrew;Jung, Youn Kil;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Shin, In-Gu;Yee, Jennifer C.;Zhu, Wei;Han, Cheongho;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Hyun-Woo;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Yongseok
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.41.1-41.1
    • /
    • 2018
  • We introduce a current status and future plans of Korea Microlensing Telescope Network (KMTNet) microlensing experiments, which include an observational strategy, pipeline, event-finder, and collaborations with Spitzer. The KMTNet experiments were initiated in 2015. From 2016, KMTNet observes 27 fields including 6 main fields and 21 subfields. In 2017, we have finished the DIA photometry for all 2016 and 2017 data. Thus, it is possible to do a real-time DIA photometry from 2018. The DIA photometric data is used for finding events from the KMTNet event-finder. The KMTNet event-finder has been improved relative to the previous version, which already found 857 events in 4 main fields of 2015. We have applied the improved version to all 2016 data. As a result, we find that 2597 events are found, and out of them, 265 are found in KMTNet-K2C9 overlapping fields. For increasing the detection efficiency of event-finder, we are working on filtering false events out by machine-learning method. In 2018, we plan to measure event detection efficiency of KMTNet by injecting fake events into the pipeline near the image level. Thanks to high-cadence observations, KMTNet found fruitful interesting events including exoplanets and brown dwarfs, which were not found by other groups. Masses of such exoplanets and brown dwarfs are measured from collaborations with Spitzer and other groups. Especially, KMTNet has been closely cooperating with Spitzer from 2015. Thus, KMTNet observes Spitzer fields. As a result, we could measure the microlens parallaxes for many events. Also, the automated KMTNet PySIS pipeline was developed before the 2017 Spitzer season and it played a very important role in selecting the Spitzer target. For the 2018 Spitzer season, we will improve the PySIS pipeline to obtain better photometric results.

  • PDF

문장유사도 측정 기법을 통한 스팸 필터링 시스템 구현 (Implementation of a Spam Message Filtering System using Sentence Similarity Measurements)

  • 우수빈;이종우
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권1호
    • /
    • pp.57-64
    • /
    • 2017
  • 문자 메시지는 휴대폰을 사용하는 사람들에게 중요한 의사소통의 방법 중 하나이다. 또한 친구맺기 방식이 필요 없이 사용이 가능하기 때문에 이를 악용한 불법 광고 스팸메시지가 기승을 부리고 있다. 최근 스팸 필터링을 위해 기계 학습을 이용한 시스템들이 등장 하였지만 많은 계산을 필요로 하는 단점이 있다. 본 논문에서는 검색할 쿼리를 입력할 때 부정확한 쿼리를 입력하더라도 저장된 데이터베이스와 비교하여 가장 비슷한 단어를 차수 개념을 적용하여 유추하는 집합 기반 POI(Point of Interest) 검색 알고리즘을 이용하여 스팸 필터링 시스템을 구현하였다. 이 알고리즘을 적용하면 서버 컴퓨팅 없이 문자의 조합만을 이용해 쿼리를 유추할 수 있기 때문에 스팸 필터링에 적용하여 입력된 문자메시지가 교묘하게 변형되더라도 스팸이라고 필터링이 가능하다. 또한 문장 유사도 측정 기법을 활용하여 스팸 필터링 성능을 향상시켰으며, 스팸 필터링에 취약한 특정 유형도 걸러내기 위해 특정 전처리 과정을 지원함으로써 대부분의 스팸메세지를 필터링 가능하도록 하였다. 기존 집합기반 POI 검색 알고리즘과 이를 확장 시킨 문장 유사도 측정 기법, 특정 전처리 과정을 추가한 시스템으로 필터링 시스템의 성능평가를 진행하였다. 그 결과 본 논문에서 구현한 시스템이 기존 집합기반 POI 알고리즘과 비교하여 향상된 스팸 필터링 성능을 보여주는 것을 확인하였다. 또한 이동통신사 3사에서 필터링에 취약한 유형이 본 논문에서 구현한 시스템으로 높은 성능으로 필터링이 가능하다는 것을 확인하였다.

사용자 편의성과 효율성을 증진하기 위한 신뢰도 높은 이미지-텍스트 융합 CAPTCHA (Reliable Image-Text Fusion CAPTCHA to Improve User-Friendliness and Efficiency)

  • 문광호;김유성
    • 정보처리학회논문지C
    • /
    • 제17C권1호
    • /
    • pp.27-36
    • /
    • 2010
  • 웹 서비스 신청 단계에서 신청자가 실제 인간 사용자임을 확인하기 위해 사용되는 텍스트 기반 캡차(text-based CAPTCHA)의 변형된 문자를 광학문자인식 기술로 파악하는 것이 가능하기에 캡차의 신뢰성이 떨어지는 문제가 발생하고 있다. 이 문제를 해결하기 위해 제안되었던 기존의 이미지 기반 캡차(image-based CAPTCHA)에서도 여러 문제점이 존재한다. 인공지능 프로그램을 사용하여 시스템이 보유하고 있는 제한된 수의 이미지 내용을 파악함으로써 신뢰도가 떨어지는 문제가 발생할 수 있으며, 제공된 이미지에 대해 사용자가 다른 유사한 단어를 입력하는 경우에는 오답으로 판정되어 반복적으로 캡차를 시도해야 하는 불편함이 발생 할 수 있으며 또한, 사용자에게 캡차 문제를 제공하기 위해 여러 이미지 파일을 전송해야 하기에 전송 비용의 비효율성 문제가 존재한다. 이러한 기존 이미지 기반 캡차의 문제점들을 해결하기 위해 본 논문에서는 이미지와 관련 키워드 일부를 융합하여 제공하는 이미지-텍스트 융합 캡차를 제안하였다. 본 논문에서 제안한 이미지-텍스트 융합 캡차에서는 이미지와 관련된 단어의 일부분을 힌트로 활용하여 쉽게 정답을 입력할 수 있도록 사용자 편리성을 제공하며 이미지와 텍스트를 한 이미지 파일 내에 융합시켰기 때문에 전송 비용을 절약하여 효율성을 증진할 수 있다. 또한, 캡차 시스템의 신뢰성 증진을 위해 인터넷 검색으로 캡차용 이미지를 대량으로 수집하도록 하였으며 수집되는 캡차 이미지의 정확성을 유지하기 위해 필터링 과정을 거치도록 하였다. 또한, 본 논문에서는 실제 실험을 통해 제안된 이미지-텍스트 융합 캡차가 기존 이미지 기반 캡차보다 사용자에게 편리하고 신뢰성이 증진될 수 있음을 입증하였다.

사장교 케이블의 장력 추정을 위한 인공신경망 모델 개발 (Development of Artificial Neural Network Model for Estimation of Cable Tension of Cable-Stayed Bridge)

  • 김기중;박유신;박성우
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.414-419
    • /
    • 2020
  • 본 연구에서는 사장교의 케이블 가속도계로부터 확보한 방대한 계측데이터의 활용을 확대하고자 인공지능 기반의 케이블 장력 추정 모델을 개발하였다. 케이블 장력 추정 모델은 진동법에 따른 장력 추정 과정에서 고유진동수를 판정할 수 있는 알고리즘을 핵심으로 하며 학습데이터 구성에 적합하고 판정 결과에 대한 성능이 확보될 수 있도록 입력층, 은닉층, 출력층으로 구성되는 인공신경망(Artificial Neural Network)을 적용하였다. 인공신경망의 학습데이터는 케이블 가속도 계측데이터를 진동수로 변환 후 구성하였으며 고유진동수를 중심으로 일정한 패턴을 갖는 특성을 활용하여 기계학습을 진행하였다. 학습데이터 구성 시 다수 패턴의 고유진동수를 대표할 수 있도록 다양한 크기의 진폭을 갖는 진동수를 사용하고 일정 수준으로 진동수를 누적하여 사용할 경우 고유진동수에 대한 판정 성능이 개선됨을 확인하였다. 장력 추정 모델의 성능을 판단하기 위해 계측분석 기술자에 의해 추정한 장력의 관리기준과 비교하였다. 케이블 가속도계로부터 확보한 139개의 진동수를 입력값으로 사용하여 검증을 수행한 결과 실제 정답과 유사하게 고유진동수를 판정하였고 고유진동수에 의해 케이블의 장력을 추정한 결과는 96.4%의 수준으로 관리기준에 부합하는 결과를 보여주고 있다.

인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법 (An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network)

  • 박진웅;문지훈;황인준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.527-536
    • /
    • 2017
  • 최근 스마트 그리드 산업의 발달과 더불어 효과적인 에너지 관리 시스템의 필요성이 커지고 있다. 특히, 전기 부하 및 에너지 요금 감소를 위해서는 정확한 전력수요 예측과 그에 따른 효과적인 스마트 그리드 운영 전략이 필요하다. 본 논문에서는 보다 정확한 전력수요 예측을 위하여, 수요 시한 기준으로 수집된 전력 사용 데이터를 고시간 해상도로 분할하고, 이에 적합한 인공 신경망 기반의 전력수요 예측 모델을 구축하고자 한다. 예측 모델의 정확도를 향상시키기 위하여 우선, 수열 형태의 시계열 데이터가 가지는 주기성을 제대로 반영하지 못하는 기계 학습 모델의 문제점을 해결하고자, 시계열 데이터를 2차원 공간의 연속적인 데이터로 변환한다. 더욱이, 고시간 해상도에 따른 온도나 습도 등 외부 요인들의 보다 정확한 반영을 위해 이들에 대해서도 선형 보간법을 사용하여 세분화된 시점에서의 값을 추정하여 반영한다. 마지막으로, 구성된 특성 벡터에 대해 주성분 분석 수행을 통하여 불필요한 외부 요인을 제거한다. 예측 모델의 성능을 평가하기 위해서 5겹 교차 검증을 수행하였다. 실험 결과 모든 고시간 해상도에서 성능 향상을 보였으며, 특히 3분 해상도의 경우 3.71%의 가장 낮은 오차율을 보였다.

위치정보 및 사용자 경험을 반영하는 모바일 PA에이전트의 설계 (Designing mobile personal assistant agent based on users' experience and their position information)

  • 강신봉;노상욱
    • 인터넷정보학회논문지
    • /
    • 제12권1호
    • /
    • pp.99-110
    • /
    • 2011
  • 급변하는 모바일 환경에서 스마트폰을 비롯한 모바일 기기는 엔터테인먼트, 비즈니스, 정보서비스 등 사용자들의 삶의 방식을 직접적으로 변화시키는 핵심 도구로써의 역할을 하고 있다. 모바일 서비스 중 특히 사용자의 위치정보를 활용하여 서비스를 제공하는 위치기반 서비스(Location Based Service)는 검색, 증강현실, 모바일 SNS(Social Network Service), 게임 등의 다른 서비스 및 콘텐츠와 결합하여 사용자의 다양한 요구를 충족시키며 주요 서비스로 자리 잡아 가고 있다. 본 논문에서는 모바일 서비스가 갖는 잠재적 가능성을 이용하여 모바일 기기의 사용성을 증대시키며, 서비스의 복잡성을 해결하기 위하여 복잡한 태스크를 숨기고 사용자를 대신하여 프로세스를 수행시킬 수 있는 방안에 중점을 둔다. 사용자의 의도 혹은 선호도를 파악하여 사용자에게 개인화된 서비스를 제공하는 PA(Personal Assistant) 에이전트의 개념을 모바일 환경에 적용하기 위한 기법을 제시한다. 사용자의 선호도를 파악하고 개인화된 서비스를 제공하기 위하여 클러스터링 알고리즘과 데이터 분류 알고리즘을 사용하였다. 실험을 통하여 사용자 패턴별로 생성한 클러스터에 분류 알고리즘을 적용한 결과에 대한 분류정확도를 측정하였으며, 제안한 기법의 클러스터별 분류 정확도는 기존의 기법과 비교하여 17.42% 증가하였다.