• Title/Summary/Keyword: machine-learning

Search Result 5,627, Processing Time 0.04 seconds

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Deletion-Based Sentence Compression Using Sentence Scoring Reflecting Linguistic Information (언어 정보가 반영된 문장 점수를 활용하는 삭제 기반 문장 압축)

  • Lee, Jun-Beom;Kim, So-Eon;Park, Seong-Bae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.125-132
    • /
    • 2022
  • Sentence compression is a natural language processing task that generates concise sentences that preserves the important meaning of the original sentence. For grammatically appropriate sentence compression, early studies utilized human-defined linguistic rules. Furthermore, while the sequence-to-sequence models perform well on various natural language processing tasks, such as machine translation, there have been studies that utilize it for sentence compression. However, for the linguistic rule-based studies, all rules have to be defined by human, and for the sequence-to-sequence model based studies require a large amount of parallel data for model training. In order to address these challenges, Deleter, a sentence compression model that leverages a pre-trained language model BERT, is proposed. Because the Deleter utilizes perplexity based score computed over BERT to compress sentences, any linguistic rules and parallel dataset is not required for sentence compression. However, because Deleter compresses sentences only considering perplexity, it does not compress sentences by reflecting the linguistic information of the words in the sentences. Furthermore, since the dataset used for pre-learning BERT are far from compressed sentences, there is a problem that this can lad to incorrect sentence compression. In order to address these problems, this paper proposes a method to quantify the importance of linguistic information and reflect it in perplexity-based sentence scoring. Furthermore, by fine-tuning BERT with a corpus of news articles that often contain proper nouns and often omit the unnecessary modifiers, we allow BERT to measure the perplexity appropriate for sentence compression. The evaluations on the English and Korean dataset confirm that the sentence compression performance of sentence-scoring based models can be improved by utilizing the proposed method.

Development of a Water Quality Indicator Prediction Model for the Korean Peninsula Seas using Artificial Intelligence (인공지능 기법을 활용한 한반도 해역의 수질평가지수 예측모델 개발)

  • Seong-Su Kim;Kyuhee Son;Doyoun Kim;Jang-Mu Heo;Seongeun Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.24-35
    • /
    • 2023
  • Rapid industrialization and urbanization have led to severe marine pollution. A Water Quality Index (WQI) has been developed to allow the effective management of marine pollution. However, the WQI suffers from problems with loss of information due to the complex calculations involved, changes in standards, calculation errors by practitioners, and statistical errors. Consequently, research on the use of artificial intelligence techniques to predict the marine and coastal WQI is being conducted both locally and internationally. In this study, six techniques (RF, XGBoost, KNN, Ext, SVM, and LR) were studied using marine environmental measurement data (2000-2020) to determine the most appropriate artificial intelligence technique to estimate the WOI of five ecoregions in the Korean seas. Our results show that the random forest method offers the best performance as compared to the other methods studied. The residual analysis of the WQI predicted score and actual score using the random forest method shows that the temporal and spatial prediction performance was exceptional for all ecoregions. In conclusion, the RF model of WQI prediction developed in this study is considered to be applicable to Korean seas with high accuracy.

Systemic literature review on the impact of government financial support on innovation in private firms (정부의 기술혁신 재정지원 정책효과에 대한 체계적 문헌연구)

  • Ahn, Joon Mo
    • Journal of Technology Innovation
    • /
    • v.30 no.1
    • /
    • pp.57-104
    • /
    • 2022
  • The government has supported the innovation of private firms by intervening the market for various purposes, such as preventing market failure, alleviating information asymmetry, and allocating resources efficiently. Although the government's R&D budget increased rapidly in the 2000s, it is not clear whether the government intervention has made desirable impact on the market. To address this, the current study attempts to explore this issue by doing a systematic literature review on foreign and domestic papers in an integrated way. In total, 168 studies are analyzed using contents analysis approach and various lens, such as policy additionality, policy tools, firm size, unit of analysis, data and method, are adopted for analysis. Overlapping policy target, time lag between government intervention and policy effects, non-linearity of financial supports, interference between different polices, and out-dated R&D tax incentive system are reported as factors hampering the effect of the government intervention. Many policy prescriptions, such as program evaluation indices reflecting behavioral additionality, an introduction of policy mix and evidence-based policy using machine learning, are suggested to improve these hurdles.

Study of Smart Integration processing Systems for Sensor Data (센서 데이터를 위한 스마트 통합 처리 시스템 연구)

  • Ji, Hyo-Sang;Kim, Jae-Sung;Kim, Ri-Won;Kim, Jeong-Joon;Han, Ik-Joo;Park, Jeong-Min
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.8
    • /
    • pp.327-342
    • /
    • 2017
  • In this paper, we introduce an integrated processing system of smart sensor data for IoT service which collects sensor data and efficiently processes it. Based on the technology of collecting sensor data to the development of the IoT field and sending it to the network · Based on the receiving technology, as various projects such as smart homes, autonomous running vehicles progress, the sensor data is processed and effectively An autonomous control system to utilize has been a problem. However, since the data type of the sensor for monitoring the autonomous control system varies according to the domain, a sensor data integration processing system applying the autonomous control system to various different domains is necessary. Therefore, in this paper, we introduce the Smart Sensor Data Integrated Processing System, apply it and use the window as a reference to process internal and external sensor data 1) receiveData, 2) parseData, 3) addToDatabase 3 With the process of the stage, we provide and implement the automatic window opening / closing system "Smart Window" which ventilates to create a comfortable indoor environment by autonomous control system. As a result, standby information is collected and monitored, and machine learning for performing statistical analysis and better autonomous control based on the stored data is made possible.

A study on the prediction of aquatic ecosystem health grade in ungauged rivers through the machine learning model based on GAN data (GAN 데이터 기반의 머신러닝 모델을 통한 미계측 하천에서의 수생태계 건강성 등급 예측 방안 연구)

  • Lee, Seoro;Lee, Jimin;Lee, Gwanjae;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.448-448
    • /
    • 2021
  • 최근 급격한 기후변화와 도시화 및 산업화로 인한 지류하천에서의 수량과 수질의 변동은 생물 다양성 감소와 수생태계 건강성 저하에 큰 영향을 미치고 있다. 효율적인 수생태 관리를 위해서는 지속적인 유량, 수질, 그리고 수생태 모니터링을 통한 데이터 축적과 더불어 면밀한 상관 분석을 통해 수생태계 건강성의 악화 원인을 규명해야 할 필요가 있다. 그러나 수많은 지류하천을 대상으로 한 지속적인 모니터링은 현실적으로 어려움이 있으며, 수생태계의 특성 상 단일 영향 인자만으로 수생태계의 건강성 변화와의 관계를 정확히 파악하는데 한계가 있다. 따라서 지류하천에서의 유량 및 수질의 시공간적인 변동성과 다양한 영향 인자를 고려하여 수생태계의 건강성을 효율적으로 예측할 수 있는 기술이 필요하다. 이에 본 연구에서는 경험적 데이터 기반의 머신러닝 모델 구축을 통해 미계측 하천에서의 수생태계 건강성 지수(BMI, TDI, FAI)의 등급(A to E)을 예측하고자 하였다. 머신러닝 모델은 학습 데이터셋의 양과 질에 따라 성능이 크게 달라질 수 있으며, 학습 데이터셋의 분포가 불균형적일 경우 과적합 또는 과소적합 문제가 발생할 수 있다. 이를 보완하고자 본 연구에서는 실제 측정망 데이터셋을 바탕으로 생성적 적대 신경망 GAN(Generative Adversarial Network) 알고리즘을 통해 머신러닝 모델 학습에 필요한 추가 데이터셋(유량, 수질, 기상, 수생태 등급)을 확보하였다. 머신러닝 모델의 성능은 5차 교차검증 과정을 통해 평가하였으며, GAN 데이터셋의 정확도는 실제 측정망 데이터셋의 정규분포와의 비교 분석을 통해 평가하였다. 최종적으로 SWAT(Soil and Water Assessment Tool) 모형을 통해 예측 된 미계측 하천에서의 데이터셋을 머신러닝 모델의 검증 자료로 사용하여 수생태계 건강성 등급 예측 정확도를 평가하였다. 본 연구에서의 GAN에 의해 강화된 머신러닝 모델은 수질 및 수생태 관리가 필요한 우심 지류하천 선정과 구조적/비구조적 최적관리기법에 따른 수생태계 건강성 개선 효과를 평가하는데 활용될 수 있을 것이다. 또한 이를 통해 예측된 미계측 하천에서의 수생태계 건강성 등급 자료는 수량-수질-수생태를 유기적으로 연계한 통합 물관리 정책을 수립하는데 기초자료로 활용될 수 있을 것이라 사료된다.

  • PDF

Development of Suspended Sediment Concentration Measurement Technique Based on Hyperspectral Imagery with Optical Variability (분광 다양성을 고려한 초분광 영상 기반 부유사 농도 계측 기법 개발)

  • Kwon, Siyoon;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.116-116
    • /
    • 2021
  • 자연 하천에서의 부유사 농도 계측은 주로 재래식 채집방식을 활용한 직접계측 방식에 의존하여 비용과 시간이 많이 소요되며 점 계측 방식으로 고해상도의 시공간 자료를 측정하기엔 한계가 존재한다. 이러한 한계점을 극복하기 위해 최근 위성영상과 드론을 활용하여 촬영된 다분광 혹은 초분광 영상을 통해 고해상도의 부유사 농도 시공간분포를 측정하는 기법에 대한 연구가 활발히 진행되고 있다. 하지만, 다른 하천 물리량 계측에 비해 부유사 계측 연구는 하천에 따라 부유사가 비균질적으로 분포하여 원격탐사를 통해 정확하고 전역적인 농도 분포를 재현하기는 어려운 실정이다. 이러한 부유사의 비균질성은 부유사의 입도분포, 광물특성, 침강성 등이 하천에서 다양하게 분포하기 때문이며 이로 인해 부유사는 지역별로 다양한 분광특성을 가지게 된다. 따라서, 본 연구에서는 이러한 영향을 고려한 전역적인 부유사 농도 예측 모형을 개발하기 위해 실내 실험을 통해 부유사 특성별 고유 분광 라이브러리를 구축하고 실규모 수로에서 다양한 부유사 조건에 대한 초분광 스펙트럼과 부유사 농도를 측정하는 실험을 수행하였다. 실제 부유사 농도는 광학 기반 센서인 LISST-200X와 샘플링을 통한 실험실 분석을 통해 계측되었으며, 초분광 스펙트럼 자료는 초분광 카메라를 통해 촬영한 영상에서 부유사 계측 지점에 대한 픽셀의 스펙트럼을 추출하여 구축하였다. 이렇게 생성된 자료들의 분광 다양성을 주성분 분석(Principle Component Analysis; PCA)를 통해 분석하였으며, 부유사의 입도 분포, 부유사 종류, 수온 등과의 상관관계를 통해 분광 특성과 가장 상관관계가 높은 물리적 인자를 규명하였다. 더불어 구축된 자료를 바탕으로 기계학습 기반 주요 특징 선택 알고리즘인 재귀적 특징 제거법 (Recursive Feature Elimination)과 기계학습기반 회귀 모형인 Support Vector Regression을 결합하여 초분광 영상 기반 부유사 농도 예측 모형을 개발하였으며, 이 결과를 원격탐사 계측 연구에서 일반적으로 사용되어 오던 최적 밴드비 분석 (Optimal Band Ratio Analysis; OBRA) 방법으로 도출된 회귀식과 비교하였다. 그 결과, 기존의 OBRA 기반 방법은 비선형성을 증가시켜도 좁은 영역의 파장대만을 고려하는 한계점으로 인해 부유사의 다양한 분광 특성을 반영하지 못하였으며, 본 연구에서 제시한 기계학습 기반 예측 모형은 420 nm~1000 nm에 걸쳐 폭 넓은 파장대를 고려함과 동시에 높은 정확도를 산출하였다. 최종적으로 개발된 모형을 적용해 다양한 유사 조건에 대한 부유사 시공간 분포를 매핑한 결과, 시공간적으로 고해상도의 부유사 농도 분포를 산출하는 것으로 밝혀졌다.

  • PDF

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

Implementation of reliable dynamic honeypot file creation system for ransomware attack detection (랜섬웨어 공격탐지를 위한 신뢰성 있는 동적 허니팟 파일 생성 시스템 구현)

  • Kyoung Wan Kug;Yeon Seung Ryu;Sam Beom Shin
    • Convergence Security Journal
    • /
    • v.23 no.2
    • /
    • pp.27-36
    • /
    • 2023
  • In recent years, ransomware attacks have become more organized and specialized, with the sophistication of attacks targeting specific individuals or organizations using tactics such as social engineering, spear phishing, and even machine learning, some operating as business models. In order to effectively respond to this, various researches and solutions are being developed and operated to detect and prevent attacks before they cause serious damage. In particular, honeypots can be used to minimize the risk of attack on IT systems and networks, as well as act as an early warning and advanced security monitoring tool, but in cases where ransomware does not have priority access to the decoy file, or bypasses it completely. has a disadvantage that effective ransomware response is limited. In this paper, this honeypot is optimized for the user environment to create a reliable real-time dynamic honeypot file, minimizing the possibility of an attacker bypassing the honeypot, and increasing the detection rate by preventing the attacker from recognizing that it is a honeypot file. To this end, four models, including a basic data collection model for dynamic honeypot generation, were designed (basic data collection model / user-defined model / sample statistical model / experience accumulation model), and their validity was verified.

Comparison of the Characteristics between the Dynamical Model and the Artificial Intelligence Model of the Lorenz System (Lorenz 시스템의 역학 모델과 자료기반 인공지능 모델의 특성 비교)

  • YOUNG HO KIM;NAKYOUNG IM;MIN WOO KIM;JAE HEE JEONG;EUN SEO JEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.133-142
    • /
    • 2023
  • In this paper, we built a data-driven artificial intelligence model using RNN-LSTM (Recurrent Neural Networks-Long Short-Term Memory) to predict the Lorenz system, and examined the possibility of whether this model can replace chaotic dynamic models. We confirmed that the data-driven model reflects the chaotic nature of the Lorenz system, where a small error in the initial conditions produces fundamentally different results, and the system moves around two stable poles, repeating the transition process, the characteristic of "deterministic non-periodic flow", and simulates the bifurcation phenomenon. We also demonstrated the advantage of adjusting integration time intervals to reduce computational resources in data-driven models. Thus, we anticipate expanding the applicability of data-driven artificial intelligence models through future research on refining data-driven models and data assimilation techniques for data-driven models.