• Title/Summary/Keyword: machine utilization

Search Result 405, Processing Time 0.027 seconds

Shear Strength Characteristics of Unconsolidated-Undrained Reinforced Decomposed Granite Soil under Monotonic and Cyclic Loading (정.동적 하중에 의한 비압밀비배수 보강화강풍화토의 전단강도 특성)

  • Cho, Yong-Sung;Koo, Ho-Bon;Park, Inn-Joon;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.13-21
    • /
    • 2006
  • When enforced earth is used for the retain wall and four walls, the most important thing would be how to maximize the land utilization. Accordingly, in case of enforced earth, we pile up the minimal height of earth ($20{\sim}50\;cm$) and harden the earth using a static dynamic hardening machine. In this paper, we tried to analyze and compare the stress transformation characteristics of reinforced weathered granite soil with geosynthetics when repetitive load is added to the enforced earth structure and when static load is added. The result is that the cohesion component of the strength increased greatly and the friction component decreased slightly.

Visualizing Article Material using a Big Data Analytical Tool R Language (빅데이터 분석 도구 R 언어를 이용한 논문 데이터 시각화)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.326-327
    • /
    • 2021
  • Newly, big data utilization has been widely interested in a wide variety of industrial fields. Big data analysis is the process of discovering meaningful new correlations, patterns, and trends in large volumes of data stored in data stores and creating new value. Thus, most big data analysis technology methods include data mining, machine learning, natural language processing, and pattern recognition used in existing statistical computer science. Also, using the R language, a big data tool, we can express analysis results through various visualization functions using pre-processing text data. The data used in this study were analyzed for 29 papers in a specific journal. In the final analysis results, the most frequently mentioned keyword was "Research", which ranked first 743 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

  • PDF

A Study on Improving the License System for Construction Equipment Operators (건설기계 조종사 면허체계 개선에 관한 연구)

  • Kim, Sung-Keun;Lee, Junbok;Kim, Hong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.995-1002
    • /
    • 2006
  • Construction equipment plays an important role as one of resources in construction process. It is obvious that the machine intensive construction method achieves productivity and quality improvement as well as safety improvement. The number of registered construction equipment in Korea is over 320,000 in 2005 according to the national statistics safety, but recent crisis of construction equipment industrialist has been deepen by lack of skilled workers, rise in wages, diminution of working and etc. The main objective of this paper is to propose an improved management and application policy for the better construction equipment utilization. A classification method for construction equipment and a licensing system for construction equipment operators are newly suggested to revise the Construction Equipment Management Law. In order to satisfy the objective, this research performs literature reviews on domestic and overseas related laws and regulations for operating license, and conducts surveys and interviews with experts in the field of construction equipment industry. The results of this research can be considered as an important reference to update the Law that can improve construction productivity and equipment operating rate.

A Study on Environmental Factor Recommendation Technology based on Deep Learning for Digital Agriculture (디지털 농업을 위한 딥러닝 기반의 환경 인자 추천 기술 연구)

  • Han-Jin Cho
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.65-72
    • /
    • 2023
  • Smart Farm means creating new value in various fields related to agriculture, including not only agricultural production but also distribution and consumption through the convergence of agriculture and ICT. In Korea, a rental smart farm is created to spread smart agriculture, and a smart farm big data platform is established to promote data collection and utilization. It is pushing for digital transformation of agricultural products distribution from production areas to consumption areas, such as expanding smart APCs, operating online exchanges, and digitizing wholesale market transaction information. As such, although agricultural data is generated according to characteristics from various sources, it is only used as a service using statistics and standardized data. This is because there are limitations due to distributed data collection from agriculture to production, distribution, and consumption, and it is difficult to collect and process various types of data from various sources. Therefore, in this paper, we analyze the current state of domestic agricultural data collection and sharing for digital agriculture and propose a data collection and linkage method for artificial intelligence services. And, using the proposed data, we propose a deep learning-based environmental factor recommendation method.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

EDNN based prediction of strength and durability properties of HPC using fibres & copper slag

  • Gupta, Mohit;Raj, Ritu;Sahu, Anil Kumar
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.185-194
    • /
    • 2022
  • For producing cement and concrete, the construction field has been encouraged by the usage of industrial soil waste (or) secondary materials since it decreases the utilization of natural resources. Simultaneously, for ensuring the quality, the analyses of the strength along with durability properties of that sort of cement and concrete are required. The prediction of strength along with other properties of High-Performance Concrete (HPC) by optimization and machine learning algorithms are focused by already available research methods. However, an error and accuracy issue are possessed. Therefore, the Enhanced Deep Neural Network (EDNN) based strength along with durability prediction of HPC was utilized by this research method. Initially, the data is gathered in the proposed work. Then, the data's pre-processing is done by the elimination of missing data along with normalization. Next, from the pre-processed data, the features are extracted. Hence, the data input to the EDNN algorithm which predicts the strength along with durability properties of the specific mixing input designs. Using the Switched Multi-Objective Jellyfish Optimization (SMOJO) algorithm, the weight value is initialized in the EDNN. The Gaussian radial function is utilized as the activation function. The proposed EDNN's performance is examined with the already available algorithms in the experimental analysis. Based on the RMSE, MAE, MAPE, and R2 metrics, the performance of the proposed EDNN is compared to the existing DNN, CNN, ANN, and SVM methods. Further, according to the metrices, the proposed EDNN performs better. Moreover, the effectiveness of proposed EDNN is examined based on the accuracy, precision, recall, and F-Measure metrics. With the already-existing algorithms i.e., JO, GWO, PSO, and GA, the fitness for the proposed SMOJO algorithm is also examined. The proposed SMOJO algorithm achieves a higher fitness value than the already available algorithm.

Computing machinery techniques for performance prediction of TBM using rock geomechanical data in sedimentary and volcanic formations

  • Hanan Samadi;Arsalan Mahmoodzadeh;Shtwai Alsubai;Abdullah Alqahtani;Abed Alanazi;Ahmed Babeker Elhag
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.223-241
    • /
    • 2024
  • Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.

Analysis of Ammunition Inspection Record Data and Development of Ammunition Condition Code Classification Model (탄약검사기록 데이터 분석 및 탄약상태기호 분류 모델 개발)

  • Young-Jin Jung;Ji-Soo Hong;Sol-Ip Kim;Sung-Woo Kang
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.2
    • /
    • pp.23-31
    • /
    • 2024
  • In the military, ammunition and explosives stored and managed can cause serious damage if mishandled, thus securing safety through the utilization of ammunition reliability data is necessary. In this study, exploratory data analysis of ammunition inspection records data is conducted to extract reliability information of stored ammunition and to predict the ammunition condition code, which represents the lifespan information of the ammunition. This study consists of three stages: ammunition inspection record data collection and preprocessing, exploratory data analysis, and classification of ammunition condition codes. For the classification of ammunition condition codes, five models based on boosting algorithms are employed (AdaBoost, GBM, XGBoost, LightGBM, CatBoost). The most superior model is selected based on the performance metrics of the model, including Accuracy, Precision, Recall, and F1-score. The ammunition in this study was primarily produced from the 1980s to the 1990s, with a trend of increased inspection volume in the early stages of production and around 30 years after production. Pre-issue inspections (PII) were predominantly conducted, and there was a tendency for the grade of ammunition condition codes to decrease as the storage period increased. The classification of ammunition condition codes showed that the CatBoost model exhibited the most superior performance, with an Accuracy of 93% and an F1-score of 93%. This study emphasizes the safety and reliability of ammunition and proposes a model for classifying ammunition condition codes by analyzing ammunition inspection record data. This model can serve as a tool to assist ammunition inspectors and is expected to enhance not only the safety of ammunition but also the efficiency of ammunition storage management.

The gene expression programming method for estimating compressive strength of rocks

  • Ibrahim Albaijan;Daria K. Voronkova;Laith R. Flaih;Meshel Q. Alkahtani;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.465-474
    • /
    • 2024
  • Uniaxial compressive strength (UCS) is a critical geomechanical parameter that plays a significant role in the evaluation of rocks. The practice of indirectly estimating said characteristics is widespread due to the challenges associated with obtaining high-quality core samples. The primary aim of this study is to investigate the feasibility of utilizing the gene expression programming (GEP) technique for the purpose of forecasting the UCS for various rock categories, including Schist, Granite, Claystone, Travertine, Sandstone, Slate, Limestone, Marl, and Dolomite, which were sourced from a wide range of quarry sites. The present study utilized a total of 170 datasets, comprising Schmidt hammer (SH), porosity (n), point load index (Is(50)), and P-wave velocity (Vp), as the effective parameters in the model to determine their impact on the UCS. The UCS parameter was computed through the utilization of the GEP model, resulting in the generation of an equation. Subsequently, the efficacy of the GEP model and the resultant equation were assessed using various statistical evaluation metrics to determine their predictive capabilities. The outcomes indicate the prospective capacity of the GEP model and the resultant equation in forecasting the unconfined compressive strength (UCS). The significance of this study lies in its ability to enable geotechnical engineers to make estimations of the UCS of rocks, without the requirement of conducting expensive and time-consuming experimental tests. In particular, a user-friendly program was developed based on the GEP model to enable rapid and very accurate calculation of rock's UCS, doing away with the necessity for costly and time-consuming laboratory experiments.

The Perception of Pre-service English Teachers' use of AI Translation Tools in EFL Writing (영작문 도구로서의 인공지능번역 활용에 대한 초등예비교사의 인식연구)

  • Jaeseok Yang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.121-128
    • /
    • 2024
  • With the recent rise in the use of AI-based online translation tools, interest in their methods and effects on education has grown. This study involved 30 prospective elementary school teachers who completed an English writing task using an AI-based online translation tool. The study focused on assessing the impact of these tools on English writing skills and their practical applications. It examined the usability, educational value, and the advantages and disadvantages of the AI translation tool. Through data collected via writing tests, surveys, and interviews, the study revealed that the use of translation tools positively affects English writing skills. From the learners' perspective, these tools were perceived to provide support and convenience for learning. However, there was also recognition of the need for educational strategies to effectively use these tools, alongside concerns about methods to enhance the completeness or accuracy of translations and the potential for over-reliance on the tools. The study concluded that for effective utilization of translation tools, the implementation of educational strategies and the role of the teacher are crucial.