• 제목/요약/키워드: machine learning techniques

검색결과 1,117건 처리시간 0.026초

다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석 (Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms)

  • 이정희;임정호;김경민;허준
    • 한국지리정보학회지
    • /
    • 제18권4호
    • /
    • pp.81-99
    • /
    • 2015
  • 가속되는 지구온난화로 인해 한반도 주변의 탄소순환에 대한 명확한 이해의 필요성이 제기되고 있다. 산림은 이산화탄소의 주요 흡수원으로 지상 탄소량의 대부분을 저장하고 있어 이에 대한 추정이 필요하다. 우리나라에서는 국가산림자원조사의 표본점에서 측정되는 헥타르당 임목축적량을 활용하여 산림 탄소저장량을 추정한다. 하지만 탄소저장량은 요약된 수치 형태로 발표하고 있어 탄소저장량의 공간적 분포를 파악하는 것이 어렵다. 본 연구에서는 토지피복변화가 빠르고 국가산림자원조사 표본점 배치가 부족한 도시지역을 대상으로 UNFCCC의 Approach 3와 Tier 3를 충족하는 격자 기반 산림탄소저장량을 추정하였다. 토지피복변화 및 산림탄소저장량은 1991, 1992, 2010, 2011년에 취득된 Landsat 5 TM 영상과 고해상도 항공사진, 제 3차 및 제 5, 6차 국가산림자원조사 자료를 이용하여 추정하였다. 토지피복변화는 기계학습을 이용하여 변화된 토지피복과 변화되지 않은 토지피복 항목을 한 번에 분류하여 추정하였으며, 산림탄소저장량은 반사도, 밴드비율, 식생지수, 지형변수를 입력변수로 하여 기계학습을 통해 추정하였다. 연구 결과, 산림이 그대로 산림으로 유지되는 지역의 경우 33.23tonC/ha의 흡수를 하였으며 비산림이 산림으로 변한 지역의 경우 이보다 큰 36.83tonC/ha의 흡수가 진행된 것으로 추정되었다. 산림이 비산림으로 바뀐 경우에는 -7.35tonC/ha로, 배출이 일어난 것으로 추정되었다. 본 연구를 통하여 토지피복변화에 따른 산림탄소저장량 변화를 정량적으로 이해할 수 있었으며, 향후 효율적인 산림관리에 기여할 수 있을 것으로 판단된다.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

웹서비스 저장소의 검색기법에 관한 실증적 연구 (Empirical Research on Search model of Web Service Repository)

  • 황유섭
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.173-193
    • /
    • 2010
  • 월드와이드웹 (WWW)은 유용한 정보를 포함하는 자료들의 집합에서 유용한 작업을 수행할 수 있는 서비스들의 집합으로 변화하고 있다. 새롭게 등장하고 있는 웹서비스 기술은 향후 웹의 기술적 변화를 추구하며 최근 웹의 변화에 중요한 역할을 수행할 것으로 기대된다. 웹서비스는 어플리케이션 간의 통신을 위한 호환성 표준을 제시하며 기업 내/외를 아우를 수 있는 어플리케이션 상호작용 및 통합을 촉진한다. 웹서비스가 서비스 지향 컴퓨팅환경으로서 운영하기 위해서는 웹서비스 저장소가 완성도 높게 구축되어 있어야 할 뿐 아니라, 사용자들의 필요에 맞는 웹서비스 컴포넌트를 찾을 수 있는 효율적인 도구들을 제공하여야 한다. 서비스 지향 컴퓨팅을 위한 웹서비스의 중요성이 증대됨에 따라 웹서비스의 발견을 효율적으로 지원할 수 있는 기법의 수요 또한 증대된다. 다수의 웹서비스 저장소들은 웹서비스 분류체계 및 검색기법들을 제안하여 왔지만, 대부분의 분류체계와 기존의 검색기법들은 실질적으로 활용하기에는 제대로 발달하지 못하였거나 지속적이고 체계적으로 관리하기에 너무 어려운 단점을 갖고 있다. 이 논문에서는 인공신경망 기반 군집화 기법과 XML 기반의 웹서비스 기술표준인 WSDL의 의미적 가치를 활용하여 웹서비스 분류체계 생성 프레임워크를 통한 복합 검색기법을 제안한다. 이 논문에서 인공신경망을 활용하여 제안하는 웹서비스 분류체계 생성 프레임워크는 실증적인 프로토타입 시스템으로 개발하였으며, 실제 운영되고 있는 웹서비스 저장소로부터 획득한 실제 웹서비스들을 사용하여 제안하는 웹서비스 복합 검색기법을 실증적으로 평가하였다. 또한 제안하는 방식의 효용성을 보여주는 의미 있는 실험결과를 보고한다.

인공지능 기법을 활용한 한반도 해역의 수질평가지수 예측모델 개발 (Development of a Water Quality Indicator Prediction Model for the Korean Peninsula Seas using Artificial Intelligence)

  • 김성수;손규희;김도연;허장무;김성은
    • 해양환경안전학회지
    • /
    • 제29권1호
    • /
    • pp.24-35
    • /
    • 2023
  • 급격한 산업화와 도시화로 인해 해양 오염이 심각해지고 있으며, 이러한 해양 오염을 실효적으로 관리하기 위해 수질평가지수(Water Quality Index, WQI)를 마련하여 활용하고 있다. 하지만 수질평가지수는 다소 복잡한 계산과정으로 인한 정보의 손실, 기준값 변동, 실무자의 계산오류, 통계적 오류 등의 불확실성(uncertainty)을 내포하고 있다. 이에 따라 국내·외에서 인공지능 기법을 활용하여 수질평가지수를 예측하기 위한 연구가 활발히 이루어지고 있다. 본 연구에서는 해양환경측정망 자료(2000 ~ 2020년)를 활용하여 우리나라 전 해역 즉, 5개의 생태구에 대한 WQI를 추정할 수 있는 가장 적합한 인공지능기법을 도출하기 위해 총 6가지의 기법(RF, XGBoost, KNN, Ext, SVM, LR)을 실험하였다. 그 결과, Random Forest 기법이 다른 기법에 비해 가장 우수한 성능을 보였다. Random Forest 기법의 WQI 점수 예측값과 실제값의 잔차 분석 결과, 모든 생태구에서 시간적 및 공간적 예측 성능이 우수한 것으로 나타났다. 이를 통해 본 연구에서 개발한 Random Forest 기법은 높은 정확도를 바탕으로 우리나라 전해역에 대한 WQI를 예측 가능할 것으로 사료된다.

보존지역의 합리적 관리를 위한 철새 서식 확률지도 구축 - 부산 Eco Delta City (EDC)를 중심으로 - (Probability Map of Migratory Bird Habitat for Rational Management of Conservation Areas - Focusing on Busan Eco Delta City (EDC) -)

  • 김근한;공석준;김희년;구경아
    • 한국환경복원기술학회지
    • /
    • 제26권6호
    • /
    • pp.67-84
    • /
    • 2023
  • In some areas of the Republic of Korea, the designation and management of conservation areas do not adequately reflect regional characteristics and often impose behavioral regulations without considering the local context. One prominent example is the Busan EDC area. As a result, conflicts may arise, including large-scale civil complaints, regarding the conservation and utilization of these areas. Therefore, for the efficient designation and management of protected areas, it is necessary to consider various ecosystem factors, changes in land use, and regional characteristics. In this study, we specifically focused on the Busan EDC area and applied machine learning techniques to analyze the habitat of regional species. Additionally, we employed Explainable Artificial Intelligence techniques to interpret the results of our analysis. To analyze the regional characteristics of the waterfront area in the Busan EDC district and the habitat of migratory birds, we used bird observations as dependent variables, distinguishing between presence and absence. The independent variables were constructed using land cover, elevation, slope, bridges, and river depth data. We utilized the XGBoost (eXtreme Gradient Boosting) model, known for its excellent performance in various fields, to predict the habitat probabilities of 11 bird species. Furthermore, we employed the SHapley Additive exPlanations technique, one of the representative methodologies of XAI, to analyze the relative importance and impact of the variables used in the model. The analysis results showed that in the EDC business district, as one moves closer to the river from the waterfront, the likelihood of bird habitat increases based on the overlapping habitat probabilities of the analyzed bird species. By synthesizing the major variables influencing the habitat of each species, key variables such as rivers, rice fields, fields, pastures, inland wetlands, tidal flats, orchards, cultivated lands, cliffs & rocks, elevation, lakes, and deciduous forests were identified as areas that can serve as habitats, shelters, resting places, and feeding grounds for birds. On the other hand, artificial structures such as bridges, railways, and other public facilities were found to have a negative impact on bird habitat. The development of a management plan for conservation areas based on the objective analysis presented in this study is expected to be extensively utilized in the future. It will provide diverse evidential materials for establishing effective conservation area management strategies.

텍스트 및 영상의 멀티모달분석을 이용한 트위터 사용자의 감성 흐름 모니터링 기술 (Monitoring Mood Trends of Twitter Users using Multi-modal Analysis method of Texts and Images)

  • 김은이;고은정
    • 한국융합학회논문지
    • /
    • 제9권1호
    • /
    • pp.419-431
    • /
    • 2018
  • 본 논문은 개인 사용자의 트윗을 분석하여 사용자의 감정 흐름을 모니터링할 수 있는 새로운 방법을 제안한다. 본 논문에서는 사용자의 감성 흐름을 정확하게 예측하기 위해서 기존의 텍스트 위주의 시스템과 달리 본 연구에서는 사용자가 쓴 텍스트와 영상 등으로부터 감성을 인식하는 멀티 모달 분석 기법이 개발된다. 제안된 방법에서는 먼저 어휘분석 및 문맥을 이용한 텍스트분석기와 학습기반의 영상감성인식기를 이용하여 텍스트 및 영상 트윗에 숨겨진 개별 감성을 추출한다. 이후 이들은 규칙기반 통합 방법에 의해 날짜별로 통합되고, 마지막으로 개인의 감성흐름을 보다 직관적으로 관측할 수 있도록 감성흐름그래프로 시각화한다. 제안된 방법의 효용성을 평가하기 위해 두 단계의 실험이 수행되었다. 먼저 4만여 개의 트윗으로부터 제안된 방법의 정확도 평가 실험이 수행되고, 최신 트윗 분석 기술과 비교 분석되었다. 두 번째 실험에서는 40명의 우울증을 가진 사용자와 일반사용자를 구분할 수 있는지에 대한 실험이 수행된 결과, 제안된 기술이 실제 사용자의 감성흐름을 모니터하는데 효율적임을 증명하였다.

미국 무역정책 변화가 국내 중공업 기업의 경영성과에 미치는 영향 (Predicting Performance of Heavy Industry Firms in Korea with U.S. Trade Policy Data)

  • 박진수;김경호;김범수;서지혜
    • 한국전자거래학회지
    • /
    • 제22권4호
    • /
    • pp.71-101
    • /
    • 2017
  • 미국 무역위원회(United States International Trade Commission)는 불공정 무역으로 인해 무역 질서를 해치는 경우 상계 관세(Countervailing Duties)와 반덤핑 관세(Antidumping Duties) 등을 징수하고 있다. 본 연구에서는 상기 연구 목적을 달성하기 위하여 상계 관세 및 반덤핑 관세와 관련된 데이터를 수집해 양적 분석을 수행하였다. 몇 가지 데이터 마이닝(Data mining) 기법을 활용한 본 연구의 양적 분석 결과, 미국의 상계 관세 및 반덤핑 관세 부과 경향이 우리나라의 중공업 산업의 성장률에 유의한 영향을 미친다고 잠정적으로 결론 내릴 수 있었다. 본 연구의 가장 큰 기여점은 '미국의 보호주의 무역기조가 울산지역의 주력산업의 경영성과에 부정적인 영향을 미칠 수 있다'는 직관적인 명제를 과거 데이터를 가지고 객관적으로 검증해보고 그 영향 정도를 계량화해 측정할 수 있도록 한 것이라고 할 수 있다.

반복적 부스팅 학습을 이용한 문서 여과 (Text Filtering using Iterative Boosting Algorithms)

  • 한상윤;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권4호
    • /
    • pp.270-277
    • /
    • 2002
  • 문서 여과 문제 (text filtering)는 어떤 문서가 특정한 주제에 속하는지의 여부를 판별하는 문제이다. 인터넷과 웹이 널리 퍼지고 이메일로 전송되는 문서의 양이 폭발적으로 증가함에 따라 문서 여과의 중요성도 따라서 증가하고 있는 추세이다. 이 논문에서는 새로운 학습 방법인 에이다부스트 학습 방법을 문서 여과 문제에 적용하여 기존의 방법들보다 우수한 분류 결과를 나타내는 문서 여과 시스템을 생성하고자 한다. 에이다 부스트는 간단한 가설의 집합을 생성하고 묶는 기법인데, 이 때 각각의 가설들은 문서가 특정 단어를 포함하고 있는지 검사하여 이에 따라 문서의 적합성을 판별한다. 먼저 최종 여과 시스템을 구성하는 각 가설의 출력이 1 또는 -1이 되는 이진 가설을 사용하는 기존의 에이다부스트 알고리즘에서 출발하여 좀 더 최근에 제안된 확신 정도 (실수값)를 출력하는 가설을 이용하는 에이다부스트 알고리즘을 적용함으로써 오류 감소 속도와 최종 오류율을 개선하고자 하였다. 또 각 데이타에 대한 초기 가중치를 연속 포아송 분포에 따라 임의로 부여하여 여러 번의 부스팅을 수행한 후 그 결과를 결합하는 방법을 사용함으로써 적은 학습 데이타로 인해 발생하는 과도학습의 문제를 완화하고자 하였다. 실험 데이터로는 TREC-8 필터링 트랙 데이타셋을 사용하였다. 이 데이타셋은 1992년도부터 1994년도 사이의 파이낸셜 타임스 기사로 이루어져 있다. 실험 결과, 실수값을 출력하는 가설을 사용했을 때 이진값을 갖는 가설을 사용했을 때 보다 좋은 결과를 보였고 임의 가중치를 사용하여 여러번 부스팅을 하는 방법이 더욱 향상된 성능을 나타내었다. 다른 TREC 참가자들과의 비교결과도 제시한다.

A computer vision-based approach for behavior recognition of gestating sows fed different fiber levels during high ambient temperature

  • Kasani, Payam Hosseinzadeh;Oh, Seung Min;Choi, Yo Han;Ha, Sang Hun;Jun, Hyungmin;Park, Kyu hyun;Ko, Han Seo;Kim, Jo Eun;Choi, Jung Woo;Cho, Eun Seok;Kim, Jin Soo
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.367-379
    • /
    • 2021
  • The objectives of this study were to evaluate convolutional neural network models and computer vision techniques for the classification of swine posture with high accuracy and to use the derived result in the investigation of the effect of dietary fiber level on the behavioral characteristics of the pregnant sow under low and high ambient temperatures during the last stage of gestation. A total of 27 crossbred sows (Yorkshire × Landrace; average body weight, 192.2 ± 4.8 kg) were assigned to three treatments in a randomized complete block design during the last stage of gestation (days 90 to 114). The sows in group 1 were fed a 3% fiber diet under neutral ambient temperature; the sows in group 2 were fed a diet with 3% fiber under high ambient temperature (HT); the sows in group 3 were fed a 6% fiber diet under HT. Eight popular deep learning-based feature extraction frameworks (DenseNet121, DenseNet201, InceptionResNetV2, InceptionV3, MobileNet, VGG16, VGG19, and Xception) used for automatic swine posture classification were selected and compared using the swine posture image dataset that was constructed under real swine farm conditions. The neural network models showed excellent performance on previously unseen data (ability to generalize). The DenseNet121 feature extractor achieved the best performance with 99.83% accuracy, and both DenseNet201 and MobileNet showed an accuracy of 99.77% for the classification of the image dataset. The behavior of sows classified by the DenseNet121 feature extractor showed that the HT in our study reduced (p < 0.05) the standing behavior of sows and also has a tendency to increase (p = 0.082) lying behavior. High dietary fiber treatment tended to increase (p = 0.064) lying and decrease (p < 0.05) the standing behavior of sows, but there was no change in sitting under HT conditions.

XAI 기법을 이용한 리뷰 유용성 예측 결과 설명에 관한 연구 (Explainable Artificial Intelligence Applied in Deep Learning for Review Helpfulness Prediction)

  • 류동엽;이흠철;김재경
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.35-56
    • /
    • 2023
  • 정보통신 기술의 발전에 따라 웹 사이트에는 수많은 리뷰가 지속적으로 게시되고 있다. 이로 인해 정보 과부하 문제가 발생하여 사용자들은 본인이 원하는 리뷰를 탐색하는데 어려움을 겪고 있다. 따라서, 이러한 문제를 해결하여 사용자에게 유용하고 신뢰성 있는 리뷰를 제공하기 위해 리뷰 유용성 예측에 관한 연구가 활발히 진행되고 있다. 기존 연구는 주로 리뷰에 포함된 특성을 기반으로 리뷰 유용성을 예측하였다. 그러나, 예측한 리뷰가 왜 유용한지 근거를 제시할 수 없다는 한계점이 존재한다. 따라서 본 연구는 이러한 한계점을 해결하기 위해 리뷰 유용성 예측 모델에 eXplainable Artificial Intelligence(XAI) 기법을 적용하는 방법론을 제안하였다. 본 연구는 Yelp.com에서 수집한 레스토랑 리뷰를 사용하여 리뷰 유용성 예측에 관한 연구에서 널리 사용되는 6개의 모델을 통해 예측 성능을 비교하였다. 그 다음, 예측 성능이 가장 우수한 모델에 XAI 기법을 적용하여 설명 가능한 리뷰 유용성 예측 모델을 제안하였다. 따라서 본 연구에서 제안한 방법론은 사용자의 구매 의사결정 과정에서 유용한 리뷰를 추천할 수 있는 동시에 해당 리뷰가 왜 유용한지에 대한 해석을 제공할 수 있다.