• 제목/요약/키워드: machine learning modeling

검색결과 287건 처리시간 0.033초

Unveiling the mysteries of flood risk: A machine learning approach to understanding flood-influencing factors for accurate mapping

  • Roya Narimani;Shabbir Ahmed Osmani;Seunghyun Hwang;Changhyun Jun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.164-164
    • /
    • 2023
  • This study investigates the importance of flood-influencing factors on the accuracy of flood risk mapping using the integration of remote sensing-based and machine learning techniques. Here, the Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms integrated with GIS-based techniques were considered to develop and generate flood risk maps. For the study area of NAPA County in the United States, rainfall data from the 12 stations, Sentinel-1 SAR, and Sentinel-2 optical images were applied to extract 13 flood-influencing factors including altitude, aspect, slope, topographic wetness index, normalized difference vegetation index, stream power index, sediment transport index, land use/land cover, terrain roughness index, distance from the river, soil, rainfall, and geology. These 13 raster maps were used as input data for the XGBoost and RF algorithms for modeling flood-prone areas using ArcGIS, Python, and R. As results, it indicates that XGBoost showed better performance than RF in modeling flood-prone areas with an ROC of 97.45%, Kappa of 93.65%, and accuracy score of 96.83% compared to RF's 82.21%, 70.54%, and 88%, respectively. In conclusion, XGBoost is more efficient than RF for flood risk mapping and can be potentially utilized for flood mitigation strategies. It should be noted that all flood influencing factors had a positive effect, but altitude, slope, and rainfall were the most influential features in modeling flood risk maps using XGBoost.

  • PDF

무선 통신 물리 계층의 기계학습 활용 동향 (Research Trends on Physical Layers in Wireless Communications Using Machine Learning)

  • 최윤호;강현덕;김도영;이재호;박윤옥
    • 전자통신동향분석
    • /
    • 제33권2호
    • /
    • pp.39-47
    • /
    • 2018
  • The fundamental problem of communication is that of transmitting a message from a source to a destination over a channel through the use of a transmitter and receiver. To derive a theoretically optimal solution, the transmitter and receiver can be divided into several processing blocks, with each component analyzed and optimized. The idea of machine learning (or deep learning) communications systems goes back to the original definition of the communi-cation problem, and optimizes the transmitter and receiver jointly. Although today's systems have been optimized over the last decades, and it seems difficult to compete with their performance, deep learning based communication is attractive owing to its simplicity and the fact that it can learn to communicate over any type of channel without the need for mathematical modeling or analysis.

머신러닝 기반의 신약 재창출 관련 연구 동향 분석 (Analysis of Research Trends Related to drug Repositioning Based on Machine Learning)

  • 유소연;임규건
    • 경영정보학연구
    • /
    • 제24권1호
    • /
    • pp.21-37
    • /
    • 2022
  • 신약을 개발하는 한 가지 방법의 하나인 신약 재창출(Drug Repositioning)은 이미 사람들에게 사용할 수 있도록 승인된 약물들이 다른 용도로 사용되도록 하여 새로운 적응증을 발견하는 유용한 방법이다. 최근에는 머신러닝 기술의 발달로 방대한 생물학적 정보를 분석하여 신약 개발에 활용하는 경우가 증가하고 있다. 신약 재창출에 머신러닝 기술을 활용하면 효과적인 치료법을 신속하게 찾아내는 데 도움을 줄 것이다. 현재 심각한 급성 호흡기 증후군인 코로나바이러스(COVID-19)에 의한 신종 질병으로 전 세계가 힘든 시간을 보내고 있다. 이미 임상적으로 승인된 약물의 용도를 변경하는 신약 재창출은 COVID-19 환자를 치료하기 위한 치료제의 대안이 될 수 있다. 본 연구는 머신러닝 기법을 활용하여 신약 재창출 분야에 대한 연구 동향을 살펴보고자 한다. Pub Med에서 웹 스크래핑 기법을 사용하여 'Drug Repositioning'이라는 키워드로 총 4,821건의 논문을 수집하였다. 데이터 전처리 후, 4,419건의 논문을 대상으로 빈도분석, LDA 기반 토픽모델링, Random Forest 분류 분석 및 예측 성능평가를 수행하였다. Word2vec 모델을 기반으로 연관어를 분석하였고, PCA 차원 축소 후 K-Means 군집화하여 레이블을 생성한 후, t-SNE 알고리즘을 이용하여 논문이 형성하고 있는 그룹을 시각화하고, LDA 결과에 계층적 군집화를 적용하여 히트맵으로 시각화하였다. 본 연구는 신약 재창출과 관련된 연구 주제가 무엇인지를 파악하고, 머신러닝 알고리즘을 사용하여 대량의 문헌에서 의미 있는 주제를 도출하고 시각화하는 방법을 제시하였다. 향후 신약 재창출 분야의 연구나 개발 전략을 수립하기 위한 기초자료로 활용되는 데 도움을 줄 것이라고 기대한다.

Structural novelty detection based on sparse autoencoders and control charts

  • Finotti, Rafaelle P.;Gentile, Carmelo;Barbosa, Flavio;Cury, Alexandre
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.647-664
    • /
    • 2022
  • The powerful data mapping capability of computational deep learning methods has been recently explored in academic works to develop strategies for structural health monitoring through appropriate characterization of dynamic responses. In many cases, these studies concern laboratory prototypes and finite element models to validate the proposed methodologies. Therefore, the present work aims to investigate the capability of a deep learning algorithm called Sparse Autoencoder (SAE) specifically focused on detecting structural alterations in real-case studies. The idea is to characterize the dynamic responses via SAE models and, subsequently, to detect the onset of abnormal behavior through the Shewhart T control chart, calculated with SAE extracted features. The anomaly detection approach is exemplified using data from the Z24 bridge, a classical benchmark, and data from the continuous monitoring of the San Vittore bell-tower, Italy. In both cases, the influence of temperature is also evaluated. The proposed approach achieved good performance, detecting structural changes even under temperature variations.

기하정보 기반 이상탐지분석을 이용한 BIM 개별 부재 IFC 분류 무결성 검토에 관한 연구 (Using Geometry based Anomaly Detection to check the Integrity of IFC classifications in BIM Models)

  • 구본상;신병진
    • 한국BIM학회 논문집
    • /
    • 제7권1호
    • /
    • pp.18-27
    • /
    • 2017
  • Although Industry Foundation Classes (IFC) provide standards for exchanging Building Information Modeling (BIM) data, authoring tools still require manual mapping between BIM entities and IFC classes. This leads to errors and omissions, which results in corrupted data exchanges that are unreliable and thus compromise the validity of IFC. This research explored precedent work by Krijnen and Tamke, who suggested ways to automate the mapping of IFC classes using a machine learning technique, namely anomaly detection. The technique incorporates geometric features of individual components to find outliers among entities in identical IFC classes. This research primarily focused on applying this approach on two architectural BIM models and determining its feasibility as well as limitations. Results indicated that the approach, while effective, misclassified outliers when an IFC class had several dissimilar entities. Another issue was the lack of entities for some specific IFC classes that prohibited the anomaly detection from comparing differences. Future research to improve these issues include the addition of geometric features, using novelty detection and the inclusion of a probabilistic graph model, to improve classification accuracy.

Empirical evaluations for predicting the damage of FRC wall subjected to close-in explosions

  • Duc-Kien Thai;Thai-Hoan Pham;Duy-Liem Nguyen;Tran Minh Tu;Phan Van Tien
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.65-79
    • /
    • 2023
  • This paper presents a development of empirical evaluations, which can be used to evaluate the damage of fiber-reinforced concrete composites (FRC) wall subjected to close-in blast loads. For this development, a combined application of numerical simulation and machine learning approaches are employed. First, finite element modeling of FRC wall under blast loading is developed and verified using experimental data. Numerical analyses are then carried out to investigate the dynamic behavior of the FRC wall under blast loading. In addition, a data set of 384 samples on the damage of FRC wall due to blast loads is then produced in order to develop machine learning models. Second, three robust machine learning models of Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) are employed to propose empirical evaluations for predicting the damage of FRC wall. The proposed empirical evaluations are very useful for practical evaluation and design of FRC wall subjected to blast loads.

제조 현장의 비정상 데이터 분류를 위한 기계학습 기반 접근 방안 연구 (Machine Learning based on Approach for Classification of Abnormal Data in Shop-floor)

  • 신현준;오창헌
    • 한국정보통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.2037-2042
    • /
    • 2017
  • 스마트 공장은 미리 입력된 프로그램에 의해 생산시설이 수동적으로 움직이는 공장 자동화 작업 방식과는 달리, 생산 설비 스스로 작업 방식을 결정하여야 한다. 생산 설비 스스로 작업 방식을 결정이라 함은, 이를테면 제조 현장에서 설비의 노후, 문제 발생 예측, 제품의 불량 검출 등과 같은 이상 징후가 발생할 시 이를 조기에 발견한 후 스스로 문제를 해결하는 것을 의미한다. 본 논문에서는 제조 현장의 제조 공정 이상 징후 감지를 위해 대기행렬을 이용한 제조 공정 모델링을 제시하고 해당 모델링에서 이상 징후를 기계학습 기술 중 하나인 SVM을 이용하여 이를 감지하도록 한다. 해당 대기행렬을 M/D/1을 사용하였으며, ${\mu}$, ${\lambda}$, ${\rho}$를 기반으로 컨베이어 벨트 제조 시스템을 모델링하였다. SVM을 이용하여 ${\rho}$의 변화량을 통해 이상 징후를 감지했다.

머신러닝을 이용한 안개 예측 시 목측과 시정계 계측 방법에 따른 모델 성능 차이 비교 (Comparison of Machine Learning Model Performance based on Observation Methods using Naked-eye and Visibility-meter)

  • 박창현;이순환
    • 한국지구과학회지
    • /
    • 제44권2호
    • /
    • pp.105-118
    • /
    • 2023
  • 본 연구에서는 2016년부터 2020년까지 내륙 관측소 중 안개 최다발 지역인 안동을 대상으로 XGBoost-DART 머신러닝 알고리즘을 이용하여 1 시간 후 안개 유무를 예측하였다. 기상자료, 농업관측자료, 추가 파생자료와 각 자료를 오버 샘플링한 확장자료, 총 6개의 데이터 세트를 사용하였다. 목측으로 획득한 기상현상번호와 시정계 관측으로 측정된 시정거리 자료를 각각 안개 유[1]무[0]로 이진 범주화하였다. 총 12개의 머신러닝 모델링 실험을 설계하였고, 안개가 사회와 지역사회에 미치는 유해성을 고려하여 모델의 성능은 재현율과 AUC-ROC를 중심으로 평가하였다. 전체적으로, 오버샘플링한 기상자료와 기상현상번호 기반의 예측 목표를 조합한 실험이 최고 성능을 보였다. 이 연구 결과는 머신러닝 알고리즘을 활용한 안개 예측에 있어서, 목측으로 획득한 기상현상번호의 중요성을 암시한다.

아스팔트 혼합물의 골재 간극률 예측을 위한 기계학습 프레임워크 (Machine Learning Framework for Predicting Voids in the Mineral Aggregation in Asphalt Mixtures)

  • 박혜민;나일호;김현환;지봉준
    • 한국지반신소재학회논문집
    • /
    • 제23권1호
    • /
    • pp.17-25
    • /
    • 2024
  • 골재 간극률은 구조적 강도, 내구성, 배수 및 투수성 등 다양한 아스팔트의 특성에 직접적인 영향을 미친다. 따라서 아스팔트 포장이 사용되는 위치, 기후, 환경 등에 적절하도록 골재 간극률이 설계되어야한다. 하지만 골재 간극률은 다양한 요인들에 의해 영향을 받으므로 그 설계가 쉽지 않다. 예를 들어 골재 입자의 크기 분포, 구성이나 아스팔트 바인더의 양, 다짐 수준 등 다양한 영향인자가 존재한다. 본 연구에서는 골재 간극률에 영향을 미치는 요인들로부터 골재 간극률을 예측하고자 하였다. 이를 위해 다양한 기계학습 모델 방법을 적용하였고 단일 기계학습 모델을 적용했을 때보다 높은 정확도로 골재 간극률을 예측할 수 있음을 보였다. 본 연구의 결과는 경험과 노동집약적인 실험에 의존하는 골재 간극률 예측에 데이터 기반의 접근방법을 적용할 수 있음을 보였으며 향후 최적 골재 간극률 설계 등에 활용 가능할 것으로 기대된다.

빅데이터를 이용한 서울시 행복지수 분석 및 예측을 위한 실험 및 고찰 (Forthcoming Big Data in Smart Cities: Experiment for Machine Learning Based Happiness Estimation in Seoul City)

  • 신동윤;송유미
    • 한국BIM학회 논문집
    • /
    • 제7권1호
    • /
    • pp.28-35
    • /
    • 2017
  • Cities have complex system composed diverse activities. The activities in cities have complex relationship that creates diverse urban phenomena. Big Data is emerging technology in order to understand such complex network. This research aims to understand such relations by analysing the diverse city indexes. 28 indexes were collected in 25 of districts in Seoul city and analysed to find a weighted correlation. By defining the correlation values of certain years, it tries to predict the missed index values, "happiness" of each districts in other years. The result presents that the overall prediction accuracy 70.25%. However, for further discussion, the result is considered that this methods may not enough to use in practice, since the data has inconstant accuracy by different learning years.