• Title/Summary/Keyword: machine learning modeling

Search Result 287, Processing Time 0.028 seconds

Spatial Information Based Simulator for User Experience's Optimization

  • Bang, Green;Ko, Ilju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.97-104
    • /
    • 2016
  • In this paper, we propose spatial information based simulator for user experience optimization and minimize real space complexity. We focus on developing simulator how to design virtual space model and to implement virtual character using real space data. Especially, we use expanded events-driven inference model for SVM based on machine learning. Our simulator is capable of feature selection by k-fold cross validation method for optimization of data learning. This strategy efficiently throughput of executing inference of user behavior feature by virtual space model. Thus, we aim to develop the user experience optimization system for people to facilitate mapping as the first step toward to daily life data inference. Methodologically, we focus on user behavior and space modeling for implement virtual space.

A Design and Analysis of Pressure Predictive Model for Oscillating Water Column Wave Energy Converters Based on Machine Learning (진동수주 파력발전장치를 위한 머신러닝 기반 압력 예측모델 설계 및 분석)

  • Seo, Dong-Woo;Huh, Taesang;Kim, Myungil;Oh, Jae-Won;Cho, Su-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.672-682
    • /
    • 2020
  • The Korea Nowadays, which is research on digital twin technology for efficient operation in various industrial/manufacturing sites, is being actively conducted, and gradual depletion of fossil fuels and environmental pollution issues require new renewable/eco-friendly power generation methods, such as wave power plants. In wave power generation, however, which generates electricity from the energy of waves, it is very important to understand and predict the amount of power generation and operational efficiency factors, such as breakdown, because these are closely related by wave energy with high variability. Therefore, it is necessary to derive a meaningful correlation between highly volatile data, such as wave height data and sensor data in an oscillating water column (OWC) chamber. Secondly, the methodological study, which can predict the desired information, should be conducted by learning the prediction situation with the extracted data based on the derived correlation. This study designed a workflow-based training model using a machine learning framework to predict the pressure of the OWC. In addition, the validity of the pressure prediction analysis was verified through a verification and evaluation dataset using an IoT sensor data to enable smart operation and maintenance with the digital twin of the wave generation system.

Classification of Convolvulaceae plants using Vis-NIR spectroscopy and machine learning (근적외선 분광법과 머신러닝을 이용한 메꽃과(Convolvulaceae) 식물의 분류)

  • Yong-Ho Lee;Soo-In Sohn;Sun-Hee Hong;Chang-Seok Kim;Chae-Sun Na;In-Soon Kim;Min-Sang Jang;Young-Ju Oh
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.581-589
    • /
    • 2021
  • Using visible-near infrared(Vis-NIR) spectra combined with machine learning methods, the feasibility of quick and non-destructive classification of Convolvulaceae species was studied. The main aim of this study is to classify six Convolvulaceae species in the field in different geographical regions of South Korea using a handheld spectrometer. Spectra were taken at 1.5 nm intervals from the adaxial side of the leaves in the Vis-NIR spectral region between 400 and 1,075 nm. The obtained spectra were preprocessed with three different preprocessing methods to find the best preprocessing approach with the highest classification accuracy. Preprocessed spectra of the six Convolvulaceae sp. were provided as input for the machine learning analysis. After cross-validation, the classification accuracy of various combinations of preprocessing and modeling ranged between 43.4% and 98.6%. The combination of Savitzky-Golay and Support vector machine methods showed the highest classification accuracy of 98.6% for the discrimination of Convolvulaceae sp. The growth stage of the plants, different measuring locations, and the scanning position of leaves on the plant were some of the crucial factors that affected the outcomes in this investigation. We conclude that Vis-NIR spectroscopy, coupled with suitable preprocessing and machine learning approaches, can be used in the field to effectively discriminate Convolvulaceae sp. for effective weed monitoring and management.

WQI Class Prediction of Sihwa Lake Using Machine Learning-Based Models (기계학습 기반 모델을 활용한 시화호의 수질평가지수 등급 예측)

  • KIM, SOO BIN;LEE, JAE SEONG;KIM, KYUNG TAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.71-86
    • /
    • 2022
  • The water quality index (WQI) has been widely used to evaluate marine water quality. The WQI in Korea is categorized into five classes by marine environmental standards. But, the WQI calculation on huge datasets is a very complex and time-consuming process. In this regard, the current study proposed machine learning (ML) based models to predict WQI class by using water quality datasets. Sihwa Lake, one of specially-managed coastal zone, was selected as a modeling site. In this study, adaptive boosting (AdaBoost) and tree-based pipeline optimization (TPOT) algorithms were used to train models and each model performance was evaluated by metrics (accuracy, precision, F1, and Log loss) on classification. Before training, the feature importance and sensitivity analysis were conducted to find out the best input combination for each algorithm. The results proved that the bottom dissolved oxygen (DOBot) was the most important variable affecting model performance. Conversely, surface dissolved inorganic nitrogen (DINSur) and dissolved inorganic phosphorus (DIPSur) had weaker effects on the prediction of WQI class. In addition, the performance varied over features including stations, seasons, and WQI classes by comparing spatio-temporal and class sensitivities of each best model. In conclusion, the modeling results showed that the TPOT algorithm has better performance rather than the AdaBoost algorithm without considering feature selection. Moreover, the WQI class for unknown water quality datasets could be surely predicted using the TPOT model trained with satisfactory training datasets.

Data-driven Modeling for Valve Size and Type Prediction Using Machine Learning (머신 러닝을 이용한 밸브 사이즈 및 종류 예측 모델 개발)

  • Chanho Kim;Minshick Choi;Chonghyo Joo;A-Reum Lee;Yun Gun;Sungho Cho;Junghwan Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.214-224
    • /
    • 2024
  • Valves play an essential role in a chemical plant such as regulating fluid flow and pressure. Therefore, optimal selection of the valve size and type is essential task. Valve size and type have been selected based on theoretical formulas about calculating valve sizing coefficient (Cv). However, this approach has limitations such as requiring expert knowledge and consuming substantial time and costs. Herein, this study developed a model for predicting valve sizes and types using machine learning. We developed models using four algorithms: ANN, Random Forest, XGBoost, and Catboost and model performances were evaluated using NRMSE & R2 score for size prediction and F1 score for type prediction. Additionally, a case study was conducted to explore the impact of phases on valve selection, using four datasets: total fluids, liquids, gases, and steam. As a result of the study, for valve size prediction, total fluid, liquid, and gas dataset demonstrated the best performance with Catboost (Based on R2, total: 0.99216, liquid: 0.98602, gas: 0.99300. Based on NRMSE, total: 0.04072, liquid: 0.04886, gas: 0.03619) and steam dataset showed the best performance with RandomForest (R2: 0.99028, NRMSE: 0.03493). For valve type prediction, Catboost outperformed all datasets with the highest F1 scores (total: 0.95766, liquids: 0.96264, gases: 0.95770, steam: 1.0000). In Engineering Procurement Construction industry, the proposed fluid-specific machine learning-based model is expected to guide the selection of suitable valves based on given process conditions and facilitate faster decision-making.

Prediction of Barge Ship Roll Response Amplitude Operator Using Machine Learning Techniques

  • Lim, Jae Hwan;Jo, Hyo Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, the increasing importance of artificial intelligence (AI) technology has led to its increased use in various fields in the shipbuilding and marine industries. For example, typical scenarios for AI include production management, analyses of ships on a voyage, and motion prediction. Therefore, this study was conducted to predict a response amplitude operator (RAO) through AI technology. It used a neural network based on one of the types of AI methods. The data used in the neural network consisted of the properties of the vessel and RAO values, based on simulating the in-house code. The learning model consisted of an input layer, hidden layer, and output layer. The input layer comprised eight neurons, the hidden layer comprised the variables, and the output layer comprised 20 neurons. The RAO predicted with the neural network and an RAO created with the in-house code were compared. The accuracy was assessed and reviewed based on the root mean square error (RMSE), standard deviation (SD), random number change, correlation coefficient, and scatter plot. Finally, the optimal model was selected, and the conclusion was drawn. The ultimate goals of this study were to reduce the difficulty in the modeling work required to obtain the RAO, to reduce the difficulty in using commercial tools, and to enable an assessment of the stability of medium/small vessels in waves.

Quality Prediction Model for Manufacturing Process of Free-Machining 303-series Stainless Steel Small Rolling Wire Rods (쾌삭 303계 스테인리스강 소형 압연 선재 제조 공정의 생산품질 예측 모형)

  • Seo, Seokjun;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.12-22
    • /
    • 2021
  • This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.

Real-Estate Price Prediction in South Korea via Machine Learning Modeling (머신러닝 기법을 통한 대한민국 부동산 가격 변동 예측)

  • Nam, Sanghyun;Han, Taeho;Kim, Leeju;Lee, Eunji
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.15-20
    • /
    • 2020
  • Recently, the real estate is of high interest. This is because real estate, which was considered only a residential environment in the past, is recognized as a stable investment target due to the ever-growing demand on it. In particular, in the case of the domestic market, despite the decrease in the number of people, the number of single-person households and the influx of people to large cities are accelerating, and real estate prices are rising sharply around the metropolitan area. Therefore, accurately predicting the prospects of the future real estate market becomes a very important issue not only for individual asset management but also for government policy establishment. In this paper, we developed a program to predict future real estate market prices by learning past real estate sales data using machine learning techniques. The data on the market price of real estate provided by the Korea Appraisal Board and the Ministry of Land, Infrastructure and Transport were used, and the average sales price forecast for 2022 by region is presented. The developed program is publicly available so that it could be used in various forms.

Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation (리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교)

  • Yoo, Sangwoo;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.91-97
    • /
    • 2020
  • Lithium-ion batteries (LIBs) have a longer lifespan, higher energy density, and lower self-discharge rates than other batteries, therefore, they are preferred as an Energy Storage System (ESS). However, during years 2017-2019, 28 ESS fire accidents occurred in Korea, and accurate capacity estimation of LIB is essential to ensure safety and reliability during operations. In this study, data-driven modeling that predicts capacity changes according to the charging cycle of LIB was conducted, and developed models were compared their performance for the selection of the optimal machine learning model, which includes the Decision Tree, Ensemble Learning Method, Support Vector Regression, and Gaussian Process Regression (GPR). For model training, lithium battery test data provided by NASA was used, and GPR showed the best prediction performance. Based on this study, we will develop an enhanced LIB capacity prediction and remaining useful life estimation model through additional data training, and improve the performance of anomaly detection and monitoring during operations, enabling safe and stable ESS operations.

Prediction of Food Franchise Success and Failure Based on Machine Learning (머신러닝 기반 외식업 프랜차이즈 가맹점 성패 예측)

  • Ahn, Yelyn;Ryu, Sungmin;Lee, Hyunhee;Park, Minseo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2022
  • In the restaurant industry, start-ups are active due to high demand from consumers and low entry barriers. However, the restaurant industry has a high closure rate, and in the case of franchises, there is a large deviation in sales within the same brand. Thus, research is needed to prevent the closure of food franchises. Therefore, this study examines the factors affecting franchise sales and uses machine learning techniques to predict the success and failure of franchises. Various factors that affect franchise sales are extracted by using Point of Sale (PoS) data of food franchise and public data in Gangnam-gu, Seoul. And for more valid variable selection, multicollinearity is removed by using Variance Inflation Factor (VIF). Finally, classification models are used to predict the success and failure of food franchise stores. Through this method, we propose success and failure prediction model for food franchise stores with the accuracy of 0.92.