• 제목/요약/키워드: machine learning framework

검색결과 245건 처리시간 0.026초

Machine Learning을 이용한 얼굴 인식 전자 출결 시스템 (Face Recognition System using Machine Learning)

  • 이장열;이서우;원종민;신동렬
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.137-140
    • /
    • 2017
  • 전자 출결의 방식으로 NFC, Bluetooth, Wi-Fi, RFID등의 통신 방식의 전자 출결과 생체 인식 방법의 전자 출결인 지문 인식, 홍채 인식, 얼굴 인식 등이 있다. 그러나 대부분의 전자 출결 시스템은 초기 구축 및 시스템 오류 발생에 따른 유지보수의 어려움이 존재하고, 통신 방식의 전자 출결에서는 신호의 간섭 및 감쇄로 인한 불안정한 출석 문제가 발생한다. 그리고 생체 인식방식의 전자 출결의 경우에는 고가의 장비가 요구된다. 본 논문에서는 스마트 폰 Application 및 머신 러닝 framework인 Apache Spark를 이용하여 초기 구축 단계 이후 발생하는 유지보수 비용을 최소화하고, 머신 러닝을 이용하여 얼굴 인식률을 높이는 방법을 제안한다. 또한 제안하는 시스템을 이용하는 사용자가 출결을 진행할수록 인식률이 향상되는 방법을 제안한다.

  • PDF

Finding the best suited autoencoder for reducing model complexity

  • Ngoc, Kien Mai;Hwang, Myunggwon
    • 스마트미디어저널
    • /
    • 제10권3호
    • /
    • pp.9-22
    • /
    • 2021
  • Basically, machine learning models use input data to produce results. Sometimes, the input data is too complicated for the models to learn useful patterns. Therefore, feature engineering is a crucial data preprocessing step for constructing a proper feature set to improve the performance of such models. One of the most efficient methods for automating feature engineering is the autoencoder, which transforms the data from its original space into a latent space. However certain factors, including the datasets, the machine learning models, and the number of dimensions of the latent space (denoted by k), should be carefully considered when using the autoencoder. In this study, we design a framework to compare two data preprocessing approaches: with and without autoencoder and to observe the impact of these factors on autoencoder. We then conduct experiments using autoencoders with classifiers on popular datasets. The empirical results provide a perspective regarding the best suited autoencoder for these factors.

Compressive strength estimation of eco-friendly geopolymer concrete: Application of hybrid machine learning techniques

  • Xiang, Yang;Jiang, Daibo;Hateo, Gou
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.877-894
    • /
    • 2022
  • Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues associated with the production of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete to help reduce CO2 emissions in the construction industry. The compressive strength (fc) of GPC is predicted using artificial intelligence approaches in the present study when ground granulated blast-furnace slag (GGBS) is substituted with natural zeolite (NZ), silica fume (SF), and varying NaOH concentrations. For this purpose, two machine learning methods multi-layer perceptron (MLP) and radial basis function (RBF) were considered and hybridized with arithmetic optimization algorithm (AOA), and grey wolf optimization algorithm (GWO). According to the results, all methods performed very well in predicting the fc of GPC. The proposed AOA - MLP might be identified as the outperformed framework, although other methodologies (AOA - RBF, GWO - RBF, and GWO - MLP) were also reliable in the fc of GPC forecasting process.

Improving streamflow and flood predictions through computational simulations, machine learning and uncertainty quantification

  • Venkatesh Merwade;Siddharth Saksena;Pin-ChingLi;TaoHuang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.29-29
    • /
    • 2023
  • To mitigate the damaging impacts of floods, accurate prediction of runoff, streamflow and flood inundation is needed. Conventional approach of simulating hydrology and hydraulics using loosely coupled models cannot capture the complex dynamics of surface and sub-surface processes. Additionally, the scarcity of data in ungauged basins and quality of data in gauged basins add uncertainty to model predictions, which need to be quantified. In this presentation, first the role of integrated modeling on creating accurate flood simulations and inundation maps will be presented with specific focus on urban environments. Next, the use of machine learning in producing streamflow predictions will be presented with specific focus on incorporating covariate shift and the application of theory guided machine learning. Finally, a framework to quantify the uncertainty in flood models using Hierarchical Bayesian Modeling Averaging will be presented. Overall, this presentation will highlight that creating accurate information on flood magnitude and extent requires innovation and advancement in different aspects related to hydrologic predictions.

  • PDF

SEQUENTIAL MINIMAL OPTIMIZATION WITH RANDOM FOREST ALGORITHM (SMORF) USING TWITTER CLASSIFICATION TECHNIQUES

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.116-122
    • /
    • 2023
  • Sentiment categorization technique be commonly isolated interested in threes significant classifications name Machine Learning Procedure (ML), Lexicon Based Method (LB) also finally, the Hybrid Method. In Machine Learning Methods (ML) utilizes phonetic highlights with apply notable ML algorithm. In this paper, in classification and identification be complete base under in optimizations technique called sequential minimal optimization with Random Forest algorithm (SMORF) for expanding the exhibition and proficiency of sentiment classification framework. The three existing classification algorithms are compared with proposed SMORF algorithm. Imitation result within experiential structure is Precisions (P), recalls (R), F-measures (F) and accuracy metric. The proposed sequential minimal optimization with Random Forest (SMORF) provides the great accuracy.

가설적 모델의 기계학습을 이용한 연속시간 동적시스템 모델링 프레임워크 (Modeling Framework for Continuous Dynamic Systems Using Machine Learning of Hypothetical Model)

  • 송해상;김탁곤
    • 한국시뮬레이션학회논문지
    • /
    • 제32권1호
    • /
    • pp.13-21
    • /
    • 2023
  • 본 논문은 실제 시스템의 빅데이터가 확보되었고 시스템에 대한 정보를 일부 알고 있을 때 파라미터를 가진 그레이박스 혹은 블랙박스 형태의 가설모델을 설정하고 기계학습을 통해 모델을 자동 생성하는 기법을 제안하였다. 제안된 프레임워크를 구현하고 다양한 가설모델에 대한 실험을 통해 학습된 모델의 정합도와 가설모델의 학습에 소요되는 비용에 대해 분석하였다. 실험결과 제안된 가설모델 기반 기계학습 기법으로 상미분방정식으로 기술될 수 있은 연속시스템의 그레이박스 혹은 화이트 박스 가설모델과 주어진 빅데이터를 이용하여 모델링을 했을 때 상당히 좋은 성능과 정확도를 보인 모델을 찾아낼 수 있음을 확인하였다. 이 기법은 최근 생성된 빅데이터를 이용하여 디지털트윈 모델의 일치성을 자동 갱신하거나 새로운 입력에 대한 출력을 예측하는 목적으로도 잘 활용될 수 있을 것으로 기대된다.

해양기상부표의 센서 데이터 품질 향상을 위한 프레임워크 개발 (Development of a Framework for Improvement of Sensor Data Quality from Weather Buoys)

  • 이주용;이재영;이지우;신상문;장준혁;한준희
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.186-197
    • /
    • 2023
  • In this study, we focus on the improvement of data quality transmitted from a weather buoy that guides a route of ships. The buoy has an Internet-of-Thing (IoT) including sensors to collect meteorological data and the buoy's status, and it also has a wireless communication device to send them to the central database in a ground control center and ships nearby. The time interval of data collected by the sensor is irregular, and fault data is often detected. Therefore, this study provides a framework to improve data quality using machine learning models. The normal data pattern is trained by machine learning models, and the trained models detect the fault data from the collected data set of the sensor and adjust them. For determining fault data, interquartile range (IQR) removes the value outside the outlier, and an NGBoost algorithm removes the data above the upper bound and below the lower bound. The removed data is interpolated using NGBoost or long-short term memory (LSTM) algorithm. The performance of the suggested process is evaluated by actual weather buoy data from Korea to improve the quality of 'AIR_TEMPERATURE' data by using other data from the same buoy. The performance of our proposed framework has been validated through computational experiments based on real-world data, confirming its suitability for practical applications in real-world scenarios.

Developing an Intrusion Detection Framework for High-Speed Big Data Networks: A Comprehensive Approach

  • Siddique, Kamran;Akhtar, Zahid;Khan, Muhammad Ashfaq;Jung, Yong-Hwan;Kim, Yangwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.4021-4037
    • /
    • 2018
  • In network intrusion detection research, two characteristics are generally considered vital to building efficient intrusion detection systems (IDSs): an optimal feature selection technique and robust classification schemes. However, the emergence of sophisticated network attacks and the advent of big data concepts in intrusion detection domains require two more significant aspects to be addressed: employing an appropriate big data computing framework and utilizing a contemporary dataset to deal with ongoing advancements. As such, we present a comprehensive approach to building an efficient IDS with the aim of strengthening academic anomaly detection research in real-world operational environments. The proposed system has the following four characteristics: (i) it performs optimal feature selection using information gain and branch-and-bound algorithms; (ii) it employs machine learning techniques for classification, namely, Logistic Regression, Naïve Bayes, and Random Forest; (iii) it introduces bulk synchronous parallel processing to handle the computational requirements of large-scale networks; and (iv) it utilizes a real-time contemporary dataset generated by the Information Security Centre of Excellence at the University of Brunswick (ISCX-UNB) to validate its efficacy. Experimental analysis shows the effectiveness of the proposed framework, which is able to achieve high accuracy, low computational cost, and reduced false alarms.

텍스트마이닝을 활용한 품질 4.0 연구동향 분석 (Understanding of the Overview of Quality 4.0 Using Text Mining)

  • 김민준
    • 품질경영학회지
    • /
    • 제51권3호
    • /
    • pp.403-418
    • /
    • 2023
  • Purpose: The acceleration of technological innovation, specifically Industry 4.0, has triggered the emergence of a quality management paradigm known as Quality 4.0. This study aims to provide a systematic overview of dispersed studies on Quality 4.0 across various disciplines and to stimulate further academic discussions and industrial transformations. Methods: Text mining and machine learning approaches are applied to learn and identify key research topics, and the suggested key references are manually reviewed to develop a state-of-the-art overview of Quality 4.0. Results: 1) A total of 27 key research topics were identified based on the analysis of 1234 research papers related to Quality 4.0. 2) A relationship among the 27 key research topics was identified. 3) A multilevel framework consisting of technological enablers, business methods and strategies, goals, application industries of Quality 4.0 was developed. 4) The trends of key research topics was analyzed. Conclusion: The identification of 27 key research topics and the development of the Quality 4.0 framework contribute to a better understanding of Quality 4.0. This research lays the groundwork for future academic and industrial advancements in the field and encourages further discussions and transformations within the industry.

A machine learning framework for performance anomaly detection

  • Hasnain, Muhammad;Pasha, Muhammad Fermi;Ghani, Imran;Jeong, Seung Ryul;Ali, Aitizaz
    • 인터넷정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.97-105
    • /
    • 2022
  • Web services show a rapid evolution and integration to meet the increased users' requirements. Thus, web services undergo updates and may have performance degradation due to undetected faults in the updated versions. Due to these faults, many performances and regression anomalies in web services may occur in real-world scenarios. This paper proposed applying the deep learning model and innovative explainable framework to detect performance and regression anomalies in web services. This study indicated that upper bound and lower bound values in performance metrics provide us with the simple means to detect the performance and regression anomalies in updated versions of web services. The explainable deep learning method enabled us to decide the precise use of deep learning to detect performance and anomalies in web services. The evaluation results of the proposed approach showed us the detection of unusual behavior of web service. The proposed approach is efficient and straightforward in detecting regression anomalies in web services compared with the existing approaches.