• Title/Summary/Keyword: machine learning classification models

Search Result 378, Processing Time 0.033 seconds

Performance Comparison of Machine Learning Algorithms for TAB Digit Recognition (타브 숫자 인식을 위한 기계 학습 알고리즘의 성능 비교)

  • Heo, Jaehyeok;Lee, Hyunjung;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • In this paper, the classification performance of learning algorithms is compared for TAB digit recognition. The TAB digits that are segmented from TAB musical notes contain TAB lines and musical symbols. The labeling method and non-linear filter are designed and applied to extract fret digits only. The shift operation of the 4 directions is applied to generate more data. The selected models are Bayesian classifier, support vector machine, prototype based learning, multi-layer perceptron, and convolutional neural network. The result shows that the mean accuracy of the Bayesian classifier is about 85.0% while that of the others reaches more than 99.0%. In addition, the convolutional neural network outperforms the others in terms of generalization and the step of the data preprocessing.

Prediction of Food Franchise Success and Failure Based on Machine Learning (머신러닝 기반 외식업 프랜차이즈 가맹점 성패 예측)

  • Ahn, Yelyn;Ryu, Sungmin;Lee, Hyunhee;Park, Minseo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2022
  • In the restaurant industry, start-ups are active due to high demand from consumers and low entry barriers. However, the restaurant industry has a high closure rate, and in the case of franchises, there is a large deviation in sales within the same brand. Thus, research is needed to prevent the closure of food franchises. Therefore, this study examines the factors affecting franchise sales and uses machine learning techniques to predict the success and failure of franchises. Various factors that affect franchise sales are extracted by using Point of Sale (PoS) data of food franchise and public data in Gangnam-gu, Seoul. And for more valid variable selection, multicollinearity is removed by using Variance Inflation Factor (VIF). Finally, classification models are used to predict the success and failure of food franchise stores. Through this method, we propose success and failure prediction model for food franchise stores with the accuracy of 0.92.

COVID-19 Diagnosis from CXR images through pre-trained Deep Visual Embeddings

  • Khalid, Shahzaib;Syed, Muhammad Shehram Shah;Saba, Erum;Pirzada, Nasrullah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.175-181
    • /
    • 2022
  • COVID-19 is an acute respiratory syndrome that affects the host's breathing and respiratory system. The novel disease's first case was reported in 2019 and has created a state of emergency in the whole world and declared a global pandemic within months after the first case. The disease created elements of socioeconomic crisis globally. The emergency has made it imperative for professionals to take the necessary measures to make early diagnoses of the disease. The conventional diagnosis for COVID-19 is through Polymerase Chain Reaction (PCR) testing. However, in a lot of rural societies, these tests are not available or take a lot of time to provide results. Hence, we propose a COVID-19 classification system by means of machine learning and transfer learning models. The proposed approach identifies individuals with COVID-19 and distinguishes them from those who are healthy with the help of Deep Visual Embeddings (DVE). Five state-of-the-art models: VGG-19, ResNet50, Inceptionv3, MobileNetv3, and EfficientNetB7, were used in this study along with five different pooling schemes to perform deep feature extraction. In addition, the features are normalized using standard scaling, and 4-fold cross-validation is used to validate the performance over multiple versions of the validation data. The best results of 88.86% UAR, 88.27% Specificity, 89.44% Sensitivity, 88.62% Accuracy, 89.06% Precision, and 87.52% F1-score were obtained using ResNet-50 with Average Pooling and Logistic regression with class weight as the classifier.

Ensemble Model Based Intelligent Butterfly Image Identification Using Color Intensity Entropy (컬러 영상 색채 강도 엔트로피를 이용한 앙상블 모델 기반의 지능형 나비 영상 인식)

  • Kim, Tae-Hee;Kang, Seung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.972-980
    • /
    • 2022
  • The butterfly species recognition technology based on machine learning using images has the effect of reducing a lot of time and cost of those involved in the related field to understand the diversity, number, and habitat distribution of butterfly species. In order to improve the accuracy and time efficiency of butterfly species classification, various features used as the inputs of machine learning models have been studied. Among them, branch length similarity(BLS) entropy or color intensity entropy methods using the concept of entropy showed higher accuracy and shorter learning time than other features such as Fourier transform or wavelet. This paper proposes a feature extraction algorithm using RGB color intensity entropy for butterfly color images. In addition, we develop butterfly recognition systems that combines the proposed feature extraction method with representative ensemble models and evaluate their performance.

One-Class Classification Model Based on Lexical Information and Syntactic Patterns (어휘 정보와 구문 패턴에 기반한 단일 클래스 분류 모델)

  • Lee, Hyeon-gu;Choi, Maengsik;Kim, Harksoo
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.817-822
    • /
    • 2015
  • Relation extraction is an important information extraction technique that can be widely used in areas such as question-answering and knowledge population. Previous studies on relation extraction have been based on supervised machine learning models that need a large amount of training data manually annotated with relation categories. Recently, to reduce the manual annotation efforts for constructing training data, distant supervision methods have been proposed. However, these methods suffer from a drawback: it is difficult to use these methods for collecting negative training data that are necessary for resolving classification problems. To overcome this drawback, we propose a one-class classification model that can be trained without using negative data. The proposed model determines whether an input data item is included in an inner category by using a similarity measure based on lexical information and syntactic patterns in a vector space. In the experiments conducted in this study, the proposed model showed higher performance (an F1-score of 0.6509 and an accuracy of 0.6833) than a representative one-class classification model, one-class SVM(Support Vector Machine).

Classification of Malware Families Using Hybrid Datasets (하이브리드 데이터셋을 이용한 악성코드 패밀리 분류)

  • Seo-Woo Choi;Myeong-Jin Han;Yeon-Ji Lee;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1067-1076
    • /
    • 2023
  • Recently, as variant malware has increased, the scale of cyber hacking incidents is expanding. To respond to intelligent cyberhacking attack, machine learning-based research is actively underway to effectively classify malware families. However, existing classification models have problems where performance deteriorates when the dataset is obfuscated or sparse. In this paper, we propose a hybrid dataset that combines features extracted from ASM files and BYTES files, and evaluate classification performance using FNN. As a result of the experiment, the proposed method showed performance improvement of about 4% compared to a single dataset, and in particular, performance improvement of about 30% for rare families.

Identifying potential mergers of globular clusters: a machine-learning approach

  • Pasquato, Mario
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.89-89
    • /
    • 2014
  • While the current consensus view holds that galaxy mergers are commonplace, it is sometimes speculated that Globular Clusters (GCs) may also have undergone merging events, possibly resulting in massive objects with a strong metallicity spread such as Omega Centauri. Galaxies are mostly far, unresolved systems whose mergers are most likely wet, resulting in observational as well as modeling difficulties, but GCs are resolved into stars that can be used as discrete dynamical tracers, and their mergers might have been dry, therefore easily simulated with an N-body code. It is however difficult to determine the observational parameters best suited to reveal a history of merging based on the positions and kinematics of GC stars, if evidence of merging is at all observable. To overcome this difficulty, we investigate the applicability of supervised and unsupervised machine learning to the automatic reconstruction of the dynamical history of a stellar system. In particular we test whether statistical clustering methods can classify simulated systems into monolithic versus merger products. We run direct N-body simulations of two identical King-model clusters undergoing a head-on collision resulting in a merged system, and other simulations of isolated King models with the same total number of particles as the merged system. After several relaxation times elapse, we extract a sample of snapshots of the sky-projected positions of particles from each simulation at different dynamical times, and we run a variety of clustering and classification algorithms to classify the snapshots into two subsets in a relevant feature space.

  • PDF

Predicting the Number of People for Meals of an Institutional Foodservice by Applying Machine Learning Methods: S City Hall Case (기계학습방법을 활용한 대형 집단급식소의 식수 예측: S시청 구내직원식당의 실데이터를 기반으로)

  • Jeon, Jongshik;Park, Eunju;Kwon, Ohbyung
    • Journal of the Korean Dietetic Association
    • /
    • v.25 no.1
    • /
    • pp.44-58
    • /
    • 2019
  • Predicting the number of meals in a foodservice organization is an important decision-making process that is essential for successful food production, such as reducing the amount of residue, preventing menu quality deterioration, and preventing rising costs. Compared to other demand forecasts, the menu of dietary personnel includes diverse menus, and various dietary supplements include a range of side dishes. In addition to the menus, diverse subjects for prediction are very difficult problems. Therefore, the purpose of this study was to establish a method for predicting the number of meals including predictive modeling and considering various factors in addition to menus which are actually used in the field. For this purpose, 63 variables in eight categories such as the daily available number of people for the meals, the number of people in the time series, daily menu details, weekdays or seasons, days before or after holidays, weather and temperature, holidays or year-end, and events were identified as decision variables. An ensemble model using six prediction models was then constructed to predict the number of meals. As a result, the prediction error rate was reduced from 10%~11% to approximately 6~7%, which was expected to reduce the residual amount by approximately 40%.

Proposal of Weight Adjustment Methods Using Statistical Information in Fuzzy Weighted Mean Classifiers (퍼지 가중치 평균 분류기에서 통계 정보를 활용한 가중치 설정 기법의 제안)

  • Woo, Young-Woon;Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.9-15
    • /
    • 2009
  • The fuzzy weighted mean classifier is one of the most common classification models and could achieve high performance by adjusting the weights. However, the weights were generally decided based on the experience of experts, which made the resulting classifiers to suffer the lack of consistency and objectivity. To resolve this problem, in this paper, a weight deciding method based on the statistics of the data is introduced, which ensures the learned classifiers to be consistent and objective. To investigate the effectiveness of the proposed methods, Iris data set available from UCI machine learning repository is used and promising results are obtained.

Field Test of Automated Activity Classification Using Acceleration Signals from a Wristband

  • Gong, Yue;Seo, JoonOh
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.443-452
    • /
    • 2020
  • Worker's awkward postures and unreasonable physical load can be corrected by monitoring construction activities, thereby increasing the safety and productivity of construction workers and projects. However, manual identification is time-consuming and contains high human variance. In this regard, an automated activity recognition system based on inertial measurement unit can help in rapidly and precisely collecting motion data. With the acceleration data, the machine learning algorithm will be used to train classifiers for automatically categorizing activities. However, input acceleration data are extracted either from designed experiments or simple construction work in previous studies. Thus, collected data series are discontinuous and activity categories are insufficient for real construction circumstances. This study aims to collect acceleration data during long-term continuous work in a construction project and validate the feasibility of activity recognition algorithm with the continuous motion data. The data collection covers two different workers performing formwork at the same site. An accelerator, as well as portable camera, is attached to the worker during the entire working session for simultaneously recording motion data and working activity. The supervised machine learning-based models are trained to classify activity in hierarchical levels, which reaches a 96.9% testing accuracy of recognizing rest and work and 85.6% testing accuracy of identifying stationary, traveling, and rebar installation actions.

  • PDF