• Title/Summary/Keyword: machine learning algorithm

Search Result 1,531, Processing Time 0.029 seconds

Using Machine Learning Technique for Analytical Customer Loyalty

  • Mohamed M. Abbassy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.190-198
    • /
    • 2023
  • To enhance customer satisfaction for higher profits, an e-commerce sector can establish a continuous relationship and acquire new customers. Utilize machine-learning models to analyse their customer's behavioural evidence to produce their competitive advantage to the e-commerce platform by helping to improve overall satisfaction. These models will forecast customers who will churn and churn causes. Forecasts are used to build unique business strategies and services offers. This work is intended to develop a machine-learning model that can accurately forecast retainable customers of the entire e-commerce customer data. Developing predictive models classifying different imbalanced data effectively is a major challenge in collected data and machine learning algorithms. Build a machine learning model for solving class imbalance and forecast customers. The satisfaction accuracy is used for this research as evaluation metrics. This paper aims to enable to evaluate the use of different machine learning models utilized to forecast satisfaction. For this research paper are selected three analytical methods come from various classifications of learning. Classifier Selection, the efficiency of various classifiers like Random Forest, Logistic Regression, SVM, and Gradient Boosting Algorithm. Models have been used for a dataset of 8000 records of e-commerce websites and apps. Results indicate the best accuracy in determining satisfaction class with both gradient-boosting algorithm classifications. The results showed maximum accuracy compared to other algorithms, including Gradient Boosting Algorithm, Support Vector Machine Algorithm, Random Forest Algorithm, and logistic regression Algorithm. The best model developed for this paper to forecast satisfaction customers and accuracy achieve 88 %.

A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm (기계학습 응용 및 학습 알고리즘 성능 개선방안 사례연구)

  • Lee, Hohyun;Chung, Seung-Hyun;Choi, Eun-Jung
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.245-258
    • /
    • 2016
  • This paper aims to present the way to bring about significant results through performance improvement of learning algorithm in the research applying to machine learning. Research papers showing the results from machine learning methods were collected as data for this case study. In addition, suitable machine learning methods for each field were selected and suggested in this paper. As a result, SVM for engineering, decision-making tree algorithm for medical science, and SVM for other fields showed their efficiency in terms of their frequent use cases and classification/prediction. By analyzing cases of machine learning application, general characterization of application plans is drawn. Machine learning application has three steps: (1) data collection; (2) data learning through algorithm; and (3) significance test on algorithm. Performance is improved in each step by combining algorithm. Ways of performance improvement are classified as multiple machine learning structure modeling, $+{\alpha}$ machine learning structure modeling, and so forth.

Design of Disease Prediction Algorithm Applying Machine Learning Time Series Prediction

  • Hye-Kyeong Ko
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.321-328
    • /
    • 2024
  • This paper designs a disease prediction algorithm to diagnose migraine among the types of diseases in advance by learning algorithms using machine learning-based time series analysis. This study utilizes patient data statistics, such as electroencephalogram activity, to design a prediction algorithm to determine the onset signals of migraine symptoms, so that patients can efficiently predict and manage their disease. The results of the study evaluate how accurate the proposed prediction algorithm is in predicting migraine and how quickly it can predict the onset of migraine for disease prevention purposes. In this paper, a machine learning algorithm is used to analyze time series of data indicators used for migraine identification. We designed an algorithm that can efficiently predict and manage patients' diseases by quickly determining the onset signaling symptoms of disease development using existing patient data as input. The experimental results show that the proposed prediction algorithm can accurately predict the occurrence of migraine using machine learning algorithms.

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

Machine Learning-based Bedscore Stage Classification Algorithm (머신러닝 기반 욕창 단계 분류 알고리즘)

  • Cho, Young-bok;Yoo, Ha-na
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.326-327
    • /
    • 2022
  • This study is an algorithm for clinical decision-making using machine learning, and it is an algorithm to classify pressure sores to be used in the development of a system to help prevent pressure sores when nursing staff care for patients who lie down for a long time. As a result of machine learning, the learning accuracy of the algorithm was 82.14% and the test accuracy was 82.58%.

  • PDF

Parameter Optimization of Extreme Learning Machine Using Bacterial Foraging Algorithm (Bacterial Foraging Algorithm을 이용한 Extreme Learning Machine의 파라미터 최적화)

  • Cho, Jae-Hoon;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.807-812
    • /
    • 2007
  • Recently, Extreme learning machine(ELM), a novel learning algorithm which is much faster than conventional gradient-based learning algorithm, was proposed for single-hidden-layer feedforward neural networks. The initial input weights and hidden biases of ELM are usually randomly chosen, and the output weights are analytically determined by using Moore-Penrose(MP) generalized inverse. But it has the difficulties to choose initial input weights and hidden biases. In this paper, an advanced method using the bacterial foraging algorithm to adjust the input weights and hidden biases is proposed. Experiment at results show that this method can achieve better performance for problems having higher dimension than others.

Design of Fuzzy Pattern Classifier based on Extreme Learning Machine (Extreme Learning Machine 기반 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Sok-Beom;Hwang, Kuk-Yeon;Wang, Jihong;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.509-514
    • /
    • 2015
  • In this paper, we introduce a new pattern classifier which is based on the learning algorithm of Extreme Learning Machine the sort of artificial neural networks and fuzzy set theory which is well known as being robust to noise. The learning algorithm used in Extreme Learning Machine is faster than the conventional artificial neural networks. The key advantage of Extreme Learning Machine is the generalization ability for regression problem and classification problem. In order to evaluate the classification ability of the proposed pattern classifier, we make experiments with several machine learning data sets.

Performance of Real-time Image Recognition Algorithm Based on Machine Learning (기계학습 기반의 실시간 이미지 인식 알고리즘의 성능)

  • Sun, Young Ghyu;Hwang, Yu Min;Hong, Seung Gwan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.69-73
    • /
    • 2017
  • In this paper, we developed a real-time image recognition algorithm based on machine learning and tested the performance of the algorithm. The real-time image recognition algorithm recognizes the input image in real-time based on the machine-learned image data. In order to test the performance of the real-time image recognition algorithm, we applied the real-time image recognition algorithm to the autonomous vehicle and showed the performance of the real-time image recognition algorithm through the application of the autonomous vehicle.

A Hybrid Learning Model to Detect Morphed Images

  • Kumari, Noble;Mohapatra, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.364-373
    • /
    • 2022
  • Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.

Machine learning-based nutrient classification recommendation algorithm and nutrient suitability assessment questionnaire

  • JaHyung, Koo;LanMi, Hwang;HooHyun, Kim;TaeHee, Kim;JinHyang, Kim;HeeSeok, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.16-30
    • /
    • 2023
  • The elderly population is increasing owing to a low fertility rate and an aging population. In addition, life expectancy is increasing, and the advancement of medicine has increased the importance of health to most people. Therefore, government and companies are developing and supporting smart healthcare, which is a health-related product or industry, and providing related services. Moreover, with the development of the Internet, many people are managing their health through online searches. The most convenient way to achieve such management is by consuming nutritional supplements or seasonal foods to prevent a nutrient deficiency. However, before implementing such methods, knowing the nutrient status of the individual is difficult, and even if a test method is developed, the cost of the test will be a burden. To solve this problem, we developed a questionnaire related to nutrient classification twice, based upon which an adaptive algorithm was designed. This algorithm was designed as a machine learning based algorithm for nutrient classification and its accuracy was much better than the other machine learning algorithm.