Transactions of the Korean Society of Machine Tool Engineers
/
v.17
no.2
/
pp.38-44
/
2008
Titanium and its alloys, due to their superior properties of high specific strength and excellent corrosion resistance, are increasingly used in living applications in the 21century. The applications in aerospace and medical industries demand machining process more frequently to obtain a desired product. But unfortunately, this material is one of the most difficult-to-cut. In the turning process of titanium alloys, the key point for successful work is to select proper tool materials and cutting conditions. This study suggests a guidance for selecting the tool materials and the cutting speeds to improve tool life and surface integrity in Ti-6Al-4V titanium turning process. The experiments investigate the change of surface roughnesses, cutting forces and flank wear with various cutting parameters of tool materials, depth of cuts and feeds. As the results, K10 type of insert tip was assured as the best for turning of Ti-6Al-4V titanium alloy.
With the development of deep learning techniques, text mining is producing breakthrough performance improvements, promising future applications, and practical use cases across many fields. Likewise, even though several attempts have been made in the field of financial information, few cases apply the current technological trends. Recently, companies and government agencies have attempted to conduct research and apply text mining in the field of financial information. First, in this study, we investigate various works using text mining to show what studies have been conducted in the financial sector. Second, to broaden the view of financial application, we provide a description of several text mining techniques that can be used in the field of financial information and summarize various paradigms in which these technologies can be applied. Third, we also provide practical cases for applying the latest text mining techniques in the field of financial information to provide more tangible guidance for those who will use text mining techniques in finance. Lastly, we propose potential future research topics in the field of financial information and present the research methods and utilization plans. This study can motivate researchers studying financial issues to use text mining techniques to gain new insights and improve their work from the rich information hidden in text data.
Early diagnosis, accurate assessment, and localization of peritoneal metastasis (PM) are essential for the selection of appropriate treatments and surgical guidance. However, available imaging modalities (computed tomography [CT], conventional magnetic resonance imaging [MRI], and 18fluorodeoxyglucose positron emission tomography [PET]/CT) have limitations. The advent of new imaging techniques and novel molecular imaging agents have revealed molecular processes in the tumor microenvironment as an application for the early diagnosis and assessment of PM as well as real-time guided surgical resection, which has changed clinical management. In contrast to clinical imaging, which is purely qualitative and subjective for interpreting macroscopic structures, radiomics and artificial intelligence (AI) capitalize on high-dimensional numerical data from images that may reflect tumor pathophysiology. A predictive model can be used to predict the occurrence, recurrence, and prognosis of PM, thereby avoiding unnecessary exploratory surgeries. This review summarizes the role and status of different imaging techniques, especially new imaging strategies such as spectral photon-counting CT, fibroblast activation protein inhibitor (FAPI) PET/CT, near-infrared fluorescence imaging, and PET/MRI, for early diagnosis, assessment of surgical indications, and recurrence monitoring in patients with PM. The clinical applications, limitations, and solutions for fluorescence imaging, radiomics, and AI are also discussed.
Materials used for education include SM20C, Al6061, and acrylic. SM20C materials are used a lot in certification tests and functional competitions as carbon steel, but they are also used in industrial sites. Al6061 is said to be a material that produces a lot of tools because it has lower hardness than carbon steel and is highly flexible. When practical guidance is given to students using acrylic materials, it is a material that causes vibration and tool damage due to excessive cutting. In this process, we examine how impact on the 5-axis equipment 2NC head can affect precision control. The weakest part of a five-axis equipment is the head that controls the AC axis. In the event of precision and cumulative tolerances in this area, the precision of all products is reduced. Thus, a key part of the 2NC head, the spindle housing was carried out using Al7075 T6 (U.S. Alcoasa) material and the entire body using FCD450 (spherical graphite cast iron). In the vibration and cutting process acting on these two materials, the analysis was carried out to determine the value of applying the force as a finite element analysis under extreme conditions. We hope that using these analytical data will help students see and understand the structure of 5-axis machining rather than 5-axis cutting.
Recently, youth unemployment, especially the unemployment problem of university graduates, has emerged as a social problem. Unemployment of university graduates is both a pan-national issue and a university-level issue, and each university is making many efforts to increase the employment rate of graduates. In this study, we present a model that predicts employment availability of D-university graduates by utilizing Machine Learning. The variables used were analyzed using up to 138 personal information, admission information, bachelor's information, etc., but in order to reflect them in the future curriculum, only the data after admission works effectively, so by department / student. The proposal was limited to the recommended ability to improve the separate employment rate. In other words, since admission grades are indicators that cannot be improved due to individual efforts after enrollment, they were used to improve the degree of prediction of employment rate. In this research, we implemented a employment prediction model through analysis of the core ability of D-University, which reflects the university's philosophy, goals, human resources awards, etc., and machined the impact of the introduction of a new core ability prediction model on actual employment. Use learning to evaluate. Carried out. It is significant to establish a basis for improving the employment rate by applying the results of future research to the establishment of curriculums by department and guidance for student careers.
Achievement at university is recognized in a comprehensive sense as the level of qualitative change and development that students have embodied as a result of their experience in university education. Therefore, the academic achievement of university students will be given meaning in cooperation with the historical and social demands for diverse human resources such as creativity, leadership, and global ability, but it is practically an indicator of the outcome of university education. Measurement of academic achievement by such credits involves many problems, but in particular, standardization of academic achievement by credits based on evaluation methods, contents, and university rankings is a very difficult problem. In this study, we present a model that uses machine learning techniques to predict whether or not academic achievement is excellent for D-University graduates. The variables used were analyzed using up to 96 personal information and bachelor's information such as graduation year, department number, department name, etc., but when establishing a future education course, only the data after enrollment works effectively. Therefore, the items to be analyzed are limited to the recommended ability to improve the academic achievement of the department/student. In this research, we implemented an academic achievement prediction model through analysis of core abilities that reflect the philosophy, goals, human resources image, and utilized machine learning to affect the impact of the introduction of the prediction model on academic achievement. We plan to apply the results of future research to the establishment of curriculum and student guidance conducted in the department to establish a basis for improving academic achievement.
Journal of the Korean Society of Clothing and Textiles
/
v.21
no.1
/
pp.19-34
/
1997
The goals of this study are to suggest the guidance for automated clothing manufacture by analysis the technology of the automated manufacturing facilities and to propose how improve the efficiency of the production planning and management for automated clothing manufacture In this study, the research about the automated clothing manufacturing machines and the analysis about the modules and functions of apparel information systems were performed. In order to understand the factory automation of the larger clothing firms, the case study method was used. The case study samples were 3 clothing firms. The results and suggestions are as follows: 1. An information technology for automated clothing manufacture has enabled the computer integrated manufacturing system to connect production planning and management part with each work station on the factory floor. 2. The apparel information system to integrate and manage manufacturing informations from each workstation and the apparel CAD system are used in the department of production planning. At the cutting room, there are automated manufacturing machines like an automatic spreading system and an automatic cutting system. Sewing room has the computer controlled unit production system and semi-automated sewing machines. In addition, in the finishing room, an automatic packing machine and a press system are used and besides a warehousing system has been developed. Considering these available technology, for better product efficiency, it is necessary to consider and utilize the specific character of these automatic manufacturing machines and computer system whether they proper to each product style. 3. Most of the clothing manufacturers are in the stage of semi-automated manufacture. In order to improve the manufacturing environment, it is needed to gradual procedure of manufacturing automation with considering the firm's financial condition, existing facilities and staffs operating machines. The case study sample firms are in the high degree of manufacturing automation. They can accomplish the flexible manufacturing system to link the information system with each work station menufacturing system by computerized control. For the case of the firm having already used the computer integrated manufacturing and managing system, it is necessary that the function to deal with drawing information is added to the retaining module of the apparel system.
Journal of Korea Society of Industrial Information Systems
/
v.25
no.3
/
pp.31-38
/
2020
In this paper, we compare and analyze smart technologies and present six obstacle detection features to help visually impaired people walk. Traditionally, visually impaired people walk with the white cane or a guide dog. With the development of IoT technology, various smart walking aids systems have been developed. Those intelligent walking aids systems have obstacle-detecting systems and route-guidance systems. Many researchers are developing the walking aids system, which detects an obstacle and provides the obstacle information by haptic feedback. Also, they are designing the database server system to share the obstacle information. Particularly the composed system can quickly give an obstacle-avoidance route using shared obstacle information. Smart walking aids systems for visually impaired people will advance more rapidly by applying machine learning and intelligent systems.
Journal of Korean Library and Information Science Society
/
v.48
no.2
/
pp.215-236
/
2017
The purpose of this study is to develop an automatic classification system for recommending appropriate books of 9 enneagram personality types, using book information data reviewed by librarians. Data used for this study are book review of 501 recommended titles for children and young adults from National Library for Children and Young Adults. This study is implemented on the assumption that most people prefer different types of books, depending on their preference or personality type. Performance test for two different types of machine learning models, nonlinear kernel and linear kernel, composed of 360 clustering models with 6 different types of index term weighting and feature selections, and 10 feature selection critical mass were experimented. It is appeared that LIBLINEAR has better performance than that of LibSVM(RBF kernel). Although the performance of the developed system in this study is relatively below expectations, and the high level of difficulty in personality type base classification take into consideration, it is meaningful as a result of early stage of the experiment.
Journal of The Korean Association of Information Education
/
v.23
no.6
/
pp.583-590
/
2019
The purpose of this study is to develop an educational program for learning deep learning concepts for elementary school students. The model of education program was developed the deep-learning teaching method based on CT element-oriented teaching and learning model. The subject of the developed program is the artificial intelligence image recognition CNN algorithm, and we have developed 9 educational programs. We applied the program over two weeks to sixth graders. Expert validity analysis showed that the minimum CVR value was more than .56. The fitness level of learner level and the level of teacher guidance were less than .80, and the fitness of learning environment and media above .96 was high. The students' satisfaction analysis showed that students gave a positive evaluation of the average of 4.0 or higher on the understanding, benefit, interest, and learning materials of artificial intelligence learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.