• 제목/요약/키워드: machine foundation

검색결과 165건 처리시간 0.02초

기계기초의 지반동력학적 해석 (Soil Dynamics for Vibrating Machine Foundation)

  • 전준수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.3-25
    • /
    • 2003
  • In this presentation, soil dynamics for vibrating machine foundation is briefly stated, and the result of a model pile test is presented. Analystical methods used in solving for the stiffness and damping factor for pile-soil system are also treated and the results of the test and the calculated values are compared.

  • PDF

회전기계-기초의 상호작용을 고려한 지진해석 (Seismic Anslysis of Rotating Machine-Foundation System)

    • 한국지진공학회논문집
    • /
    • 제2권2호
    • /
    • pp.1-12
    • /
    • 1998
  • 여섯 성분의 지진에 의한 지반속도를 받는 회전기계-기초시스템의 거동을 해석하기 위해 회전기계-기초시스템을 회전원판, 회전축, 윤활유막 베어링, 주각, 그리고 뼈대기초로 구성된 것으로 이상화한다. 이때 회전기계-기초의 동적거동을 나타내는 지배운동방정식은 Gyroscope 효과와 Coriolis 효과, 윤활유막의 동적특성 그리고 지반의 병진과 회전거동을 고려하여 얻는다. 지반의 회전거동, Gyroscope 효과, 그리고 Coriolis 효과들이 회전기계-기초시스템의 전체거동에 미치는 영향을 해석예젤르 통해 고찰한다. 해석결과 회전기계-기초시스템의 지진해석에 있어서 지반의 회전거동 성분과 Gyroscope 효과의 영향을 포함하여야함을 알 수 있다.

  • PDF

Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling

  • Tripathy, Sungyani;Desai, Atul K
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.629-641
    • /
    • 2017
  • Foundation plays a significant role in safe and efficient turbo machinery operation. Turbo machineries generate harmonic load on the foundation due to their high speed rotating motion which causes vibration in the machinery, foundation and soil beneath the foundation. The problems caused by vibration get multiplied if the soil is poor. An improperly designed machine foundation increases the vibration and reduces machinery health leading to frequent maintenance. Hence it is very important to study the soil structure interaction and effect of machine vibration on the foundation during turbo machinery operation in the design stage itself. The present work studies the effect of harmonic load due to machine operation along with earthquake loading on the frame foundation for poor soil conditions. Various alternative foundations like rafts, barrette, batter pile and combinations of barrettes with batter pile are analyzed to study the improvements in the vibration patterns. Detailed computational analysis was carried out in SAP 2000 software; the numerical model was analyzed and compared with the shaking table experiment results. The numerical results are found to be closely matching with the experimental data which confirms the accuracy of the numerical model predictions. Both shake table and SAP 2000 results reveal that combination of barrette and batter piles with raft are best suitable for poor soil conditions because it reduces the displacement at top deck, bending moment and horizontal displacement of pile and thereby making the foundation more stable under seismic loading.

Dynamic response and design of a skirted strip foundation subjected to vertical vibration

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.345-358
    • /
    • 2020
  • Numerous studies have repeatedly demonstrated the efficiency of using skirts to increase the bearing capacity and to reduce settlement of shallow foundations subjected to static loads. However, no efforts have been made to study the efficiency of using these skirts to reduce settlement produced by machine vibration, although machines are very sensitive to settlement and the foundations of these machines should be designed properly to ensure that the settlement produced due to machine vibration is very small. This research has been conducted to investigate the efficiency of using skirts as a technique to reduce the settlement of a strip foundation subjected to machine vibration. A two-dimensional finite element model has been developed, validated, and employed to achieve the aim of the study. The results of the analyses showed that the use of skirts reduces the settlement produced due to machine vibration. However, the percentage decrease of the settlement is remarkably influenced by the density of the soil and the frequency of vibration, where it rises as the frequency of vibration increases and declines as the soil density rises. It was also found that increasing skirt length increases the percentage decrease of the settlement. Importantly, the results obtained from the analyses have been utilized to derive new dynamic impedance values that implicitly consider the presence of skirts. Finally, novel design equations of dynamic impedance that implicitly account to the effect of the skirts have been derived and validated utilizing a new intelligent data driven method. These new equations can be used in future designs of skirted strip foundations subjected to machine vibration.

딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구 (A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning)

  • 정민욱;김현지;곽채원;오유수
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

기계기초 매스콘크리트의 균열제어를 위한 온도관리 (A Temperature Management of Mass Concrete for Crack Control in Machine Foundation)

  • 허택녕;이제방;손영현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.394-401
    • /
    • 1996
  • This paper persents the crack control of mass concrete in massive machine foundation. The dimension of the machine foundation is 52.6m$\times$14.4m$\times$8.5m. The one distinctive characteristic of mass concrete is thermal behavior. Since the cement-water reaction is exothermic by nature, the temperature rises inside the massive concrete structure. When the heat is not quickly dissipated, it can be quite high. Significant tensile stresses may develop from the volume change associated with the increase of decrease of temperature within the mass concrete structure. To avoid occurrence of harmful cracks due to hydration heat, special attention shall be given to the construction of mass cnocrete structures. The temperature control system of mass concrete is proposed in this paper. This system contains a discussion of materials and concrete mix proportioning, thermal analysis, curing method, temperature control, and measurement of hydration heat. As will be seen throughout the paper, the proposed temperature control system have a great effect on the temperature-related cracks on mass concrete structures.

  • PDF

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

탑재장비 동적특성 및 고체음 세기의 간접 측정 (Indirect Measurement of Dynamic Characteristic and Structureborne Sound Source Level for Installed Machine)

  • 김상현;정의봉
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.727-733
    • /
    • 1996
  • Machines installed in various structures emit airborne sound and structureborne sound and are major source of noise and vibration. Especially when machines are installed upon a flexible foundation, most of noise and vibration are due to transmission of structureborne sound. Therefore, characterization and measurement of structureborne sound source level are necessary for controlling noise and vibration. But structureborne sound from vibrating machine is strongly coupled to the supportingstructure. This paper proposes the method of estimating the supporting sturcture's dynamic character- istic and structureborne sound source level for machine installed system without separating the machine, resilient mount and foundation.

  • PDF

진동기 얕은기초에 추가되는 동적 연직하중 산정을 위한 모형실험 방안 연구 (A Study on the Model Test for Estimating Dynamic Vertical Load Added to Shallow Foundation for Machine)

  • 하익수;유민택
    • 한국지반공학회논문집
    • /
    • 제36권11호
    • /
    • pp.157-165
    • /
    • 2020
  • 현재 국내외에서는 진동기계기초에 진동으로 발생하는 추가 연직 동하중을 산정하고 설계함에 있어서 명확하게 제시된 기준이나 이론이 정립되어 있지 않아 국내의 경우, 심각한 진동조건이 아님에도 불구하고 진동에 의한 추가 동하중을 정적하중의 최대 100%로 간주하는 극히 보수적인 설계가 이루어지고 있다. 본 연구의 목적은 연직 기계진동으로 인하여 정하중외에 추가적으로 발생하는 동적하중의 정량적 크기를 평가하기 위한 모형실험 방안을 제시하는 것이다. 실내 모형실험의 기초실험으로, 제한된 크기의 모형 토조 내에서 발생할 수 있는 진동 반사파의 영향을 분석 및 보완하였고, 제작한 모형 진동기계기초의 고유진동수를 산정하여 실험 시 공진영향을 최소화하였다. 제안된 기법을 적용한 본 모형실험을 수행하여, 중간 조밀도의 모래 기초지반에 놓인 기계진동 얕은 기초에 기계진동에 의해 발생하는 추가적인 동하중의 정량적 크기를 평가해 보았다. 모형실험결과로부터, 현재 국내외에서 제시하고 있는 설계기법의 적합성을 논의해 보았다.

수치해석을 이용한 함정용 장비 받침대의 기계적 임피던스 및 전달 진동 분석 (Numerical Analysis of the Mechanical Impedance and Transmitted Vibration of the Foundation for the Equipment in a Naval Vessel)

  • 한형석;손윤준
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.462-467
    • /
    • 2009
  • Reduction of the structure-borne noise of the naval vessel is very important in order to reduce the underwater radiated noise of it. One of the important factors to reduce the structure-borne noise of the installed machine in a ship is the design of the foundation having sufficiently high mechanical impedance. In this paper, the mechanical impedance of the foundation for the fan-coil unit in a naval vessel is evaluated numerically according to variation of the thickness of the foundation. And also, the forced vibration analysis is conducted considering the dynamic property of the anti-vibration mount. Through the analysis results, it can be known that the dynamic property of the anti-vibration mount should be considered when the minimum level of the mechanical impedance of the foundation is set.