• 제목/요약/키워드: machine

검색결과 24,492건 처리시간 0.044초

Quality of Radiomics Research on Brain Metastasis: A Roadmap to Promote Clinical Translation

  • Chae Jung Park;Yae Won Park;Sung Soo Ahn;Dain Kim;Eui Hyun Kim;Seok-Gu Kang;Jong Hee Chang;Se Hoon Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • 제23권1호
    • /
    • pp.77-88
    • /
    • 2022
  • Objective: Our study aimed to evaluate the quality of radiomics studies on brain metastases based on the radiomics quality score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, and the Image Biomarker Standardization Initiative (IBSI) guidelines. Materials and Methods: PubMed MEDLINE, and EMBASE were searched for articles on radiomics for evaluating brain metastases, published until February 2021. Of the 572 articles, 29 relevant original research articles were included and evaluated according to the RQS, TRIPOD checklist, and IBSI guidelines. Results: External validation was performed in only three studies (10.3%). The median RQS was 3.0 (range, -6 to 12), with a low basic adherence rate of 50.0%. The adherence rate was low in comparison to the "gold standard" (10.3%), stating the potential clinical utility (10.3%), performing the cut-off analysis (3.4%), reporting calibration statistics (6.9%), and providing open science and data (3.4%). None of the studies involved test-retest or phantom studies, prospective studies, or cost-effectiveness analyses. The overall rate of adherence to the TRIPOD checklist was 60.3% and low for reporting title (3.4%), blind assessment of outcome (0%), description of the handling of missing data (0%), and presentation of the full prediction model (0%). The majority of studies lacked pre-processing steps, with bias-field correction, isovoxel resampling, skull stripping, and gray-level discretization performed in only six (20.7%), nine (31.0%), four (3.8%), and four (13.8%) studies, respectively. Conclusion: The overall scientific and reporting quality of radiomics studies on brain metastases published during the study period was insufficient. Radiomics studies should adhere to the RQS, TRIPOD, and IBSI guidelines to facilitate the translation of radiomics into the clinical field.

기술력 평가항목을 이용한 고안정성 중소기업 판별력 검증 (Verification Test of High-Stability SMEs Using Technology Appraisal Items)

  • 이준원
    • 경영정보학연구
    • /
    • 제20권4호
    • /
    • pp.79-96
    • /
    • 2018
  • 본 연구는 기술력 평가항목 중 기업의 재무안정성과 관련된 항목을 신용평가모형에 반영하여 중소기업뿐만이 아닌 전체 기업을 대상으로 한 신용평가모형의 부도변별력을 높이기 위한 기술력 평가모형의 신용평가모형 내 내재화에 착안하여 시작되었다. 따라서 기술력 평가모형이 부채비율 기준의 고안정성 중소기업을 사전에 판별하는 데 적용될 수 있는지 검증하는 것을 목표로 한다. 대상 기업을 업종(제조업 vs. 비(非)제조업)과 업력(창업기업 vs. 비(非)창업기업)으로 구분하고, 3개년 동안 해당 군집의 평균 부채비율 1/2 이하를 달성한 기업에 대해 고안정성 중소기업으로 정의한 후, C5.0 기법을 적용하여 모형의 판별력을 검증하였다. 분석결과 소항목 수준에서는 업종과 업력에 따라 중요도 간 차이가 있지만, 중항목 수준에서는 기술개발역량이 고안정성 중소기업을 판별하는 중요변수로 도출되었으며, 기업의 업력에 따라 창업 초기에는 자금조달능력(수익창출능력을 고려한 자본구조, 자본비용 및 자금조달 방법의 다양성)이 미래 고안정성 중소기업 여부를 결정하는 중요변수이지만, 업력이 증가함에 따라 지속적인 성과를 가능하게 하는 기술개발 인프라가 재무안정성에 영향을 미치는 중요 변수로 변화한다는 결론을 도출하였다. 업종과 업력에 따른 모형의 분류 정확도는 71~91% 수준이며, 기술력 평가항목을 이용하여 고안정성 중소기업을 판별할 수 있다는 가능성을 확인하였다.

하천 내 지표 피복 분류를 위한 Sentinel-2 영상 기반 랜덤 포레스트 기법의 적용성 연구 - 내성천을 사례로 - (Application study of random forest method based on Sentinel-2 imagery for surface cover classification in rivers - A case of Naeseong Stream -)

  • 안성기;이찬주;김용민;최훈
    • 한국수자원학회논문집
    • /
    • 제57권5호
    • /
    • pp.321-332
    • /
    • 2024
  • 하천 공간의 지표 피복 현황 파악은 하천 관리 및 홍수 재해 예방에 필수적이다. 기존 조사 방법은 전문가에 의한 식생 판독을 통한 식생도 작도 방법이나 식생지수를 활용하는 방법이 활용되어 왔으나, 역동적으로 변화하는 하천 환경을 반영하기에 한계가 있다. 이러한 배경에서 본 연구는 내성천을 대상으로 위성영상 자료를 활용한 랜덤 포레스트 기법을 활용하여 다수 연도의 하천 내 식생 분포를 파악하고, 적용성을 검토하였다. 원격탐사 자료 Sentinel-2 위성 영상을 사용하였으며, 지상 참값(ground truth)은 2016년 내성천 지표 피복 자료를 활용하였다. 랜덤 포레스트 머신러닝 알고리듬을 활용하여 미리 선정된 10개 샘플링 영역으로부터 분류군 별로 1,000개의 표본을 추출하여 훈련 및 검증하였으며, 민감도 분석, 연도별 지표 피복 분석, 정확도 분석을 통하여 적용성을 평가하였다. 연구 결과, 검증 자료 기반의 정확도는 85.1%로 나타났다. 트리 수, 샘플 수, 하천 구역에 대한 민감도 분석 결과, 각각 30개, 800개, 하류에서 효율성이 높았다. 지표 분류 유형은 6개 항목에서 높은 정확도를 보여 지표 피복 분류 결과가 실제 하천 환경을 잘 반영하는 것으로 나타났다. 정확도 분석 결과, 전체 샘플 중 14.9%의 경계오류와 내부오류를 확인하였으며, 지표 피복 분류 중 산발 식생과 초본 식생을 제외한 항목들은 높은 정확도를 보였다. 본 연구에서는 단일 하천을 대상으로 적용하였지만, 보다 정확하고 많은 자료의 구축을 위해서는 다수의 하천에 대해 지표 피복 분류 기법의 적용이 요구된다.

챗GPT 등장 이후 인공지능 환각 연구의 문헌 검토: 아카이브(arXiv)의 논문을 중심으로 (Literature Review of AI Hallucination Research Since the Advent of ChatGPT: Focusing on Papers from arXiv)

  • 박대민;이한종
    • 정보화정책
    • /
    • 제31권2호
    • /
    • pp.3-38
    • /
    • 2024
  • 환각은 대형언어모형이나 대형 멀티모달 모형의 활용을 막는 큰 장벽이다. 본 연구에서는 최신 환각 연구 동향을 살펴보기 위해 챗 GPT 등장 이후인 2022년 12월부터 2024년 1월까지 아카이브(arXiv)에서 초록에 '환각'이 포함된 컴퓨터과학 분야 논문 654건을 수집해 빈도분석, 지식연결망 분석, 문헌 검토를 수행했다. 이를 통해 분야별 주요 저자, 주요 키워드, 주요 분야, 분야 간 관계를 분석했다. 분석 결과 '계산 및 언어'와 '인공지능', '컴퓨터비전 및 패턴인식', '기계학습' 분야의 연구가 활발했다. 이어 4개 주요 분야 연구 동향을 주요 저자를 중심으로 데이터 측면, 환각 탐지 측면, 환각 완화 측면으로 나눠 살펴보았다. 주요 연구 동향으로는 지도식 미세조정(SFT)과 인간 피드백 기반 강화학습(RLHF)을 통한 환각 완화, 생각의 체인(CoT) 등 추론 강화, 자동화와 인간 개입의 병행, 멀티모달 AI의 환각 완화에 대한 관심 증가 등을 들 수 있다. 본 연구는 환각 연구 최신 동향을 파악함으로써 공학계는 물론 인문사회계 후속 연구의 토대가 될 것으로 기대한다.

활동기반 교통수요 모델링을 위한 투어기반 통행분석 및 보정방안 (Tour-based Personalized Trip Analysis and Calibration Method for Activity-based Traffic Demand Modelling)

  • 유예지;강희찬;유승모;오태호
    • 한국ITS학회 논문지
    • /
    • 제22권6호
    • /
    • pp.32-48
    • /
    • 2023
  • 자율주행기술의 발달은 점차 개인화된 통행을 유도하며, 자율주행차량으로의 전환으로 인한 도로운영 측면에서 교통 영향력은 개인차량을 이용한 수요에 의해 가장 큰 영향력을 받는다. 따라서, 교통 영향력 검토를 위해서는 개인통행특성 이해를 기반한 통행발생량 산정이 필요하다. 개인 통행특성 반영이 가능한 Activity-based model(ABM)은 개인의 모든 이동을 다루므로 통행과 통행 사이의 관계에 대한 이해가 선행되어야 한다. 하지만, ABM은 실제 수요예측에서 데이터 구득문제와 같이 많은 한계점이 있다. 따라서, 본 연구에서는 가구통행실태조사자료를 기반으로 통행간 관계를 설명할 수 있는 Tour-based 모형을 활용하였다. 또한, 샘플조사 자료의 전수화를 위해 차량등록대수 및 인구수 데이터를 활용하여 개인차량발생량 보정방안을 제시하였다. 통행발생량 분석결과, KTDB와 비교하였을 때 본 연구에서 전체통행발생량은 약 13% 높았으며, 업무통행의 경우 약 9% 차이로 합리적인 오차수준으로 분석되었다. 결과적으로 본 연구의 궁극적인 목표인 도로운영 측면의 자율주행차량 도입에 따른 수요예측을 위해 Activity-based 모형 구축에 앞서 개인통행특성을 반영할 수 있는 Tour를 기반으로 발생량 보정방안으로 활용될 수 있다.

다변량 분석 방법을 이용한 인스타그램 이용과 심리적 변인 간의 관계 예측: COVID-19로 인한 자가격리자를 중심으로 (Predicting Relationship Between Instagram Use and Psychological Variables During COVID-19 Quarantine Using Multivariate Techniques)

  • 박채리;김종완
    • 감성과학
    • /
    • 제26권4호
    • /
    • pp.3-14
    • /
    • 2023
  • 최근 소셜미디어 이용이 심리적 웰빙에 미치는 영향이 부각되고 있으나 어떤 요소가 소셜미디어 상에서의 관계의 질을 예측할 수 있는지에 대한 연구는 상대적으로 드물다. 본 연구는 머신러닝 기법을 이용하여 COVID-19로 인한 자가격리 동안 인스타그램 활동과 외로움, 우울 등의 심리 상태가 소셜미디어 상에서의 관계의 질을 예측할 수 있는지 알아보고자 하였다. 성인 95명을 대상으로 자가격리 중과 자가격리 해제 후 시점에서 외로움, 인스타그램 활동, 소셜미디어 상에서의 관계, 우울 등에 대해 자기보고식 설문에 응답하도록 하였다. 그 후, 다차원 척도법과 표상유사성분석, 분류분석을 각 시점에 대해 수행하였다. 다차원척도법 결과, 1차원에서 인스타그램 이용 시간과 우울이 다른 변인들과 구별되었으며, 2차원에서 외로움과 수동적 이용이 다른 변인들과 구별되었다. 그 후 소셜미디어 상에서의 관계의 질의 고,저 집단에 대해 표상유사성분석을 실시한 결과, 소셜미디어 상에서의 관계의 질이 높은 집단은 낮은 집단보다 자가격리의 영향을 더 많이 받는 것으로 나타났다. 분류분석 결과에서도 소셜미디어 상에서의 관계의 질 예측 변인이 사회적 고립의 여부에 따라 달라지는 것으로 나타났다. 따라서 본 연구의 결과는 사람들이 사회적 고립 상황에 있지 않을 때 인스타그램 이용 변인과 심리적 변인이 소셜미디어 상에서의 관계를 더 잘 예측할 수 있음을 시사한다.

자살 고위험군 노인: 원인 파악 및 예측 모델 개발 (High Suicidal Risk Group of Elderly: Identification of Causal Factors and Development of Predictive Model)

  • 박가연;신우식;김희웅
    • 경영정보학연구
    • /
    • 제25권3호
    • /
    • pp.59-81
    • /
    • 2023
  • 한국의 노인(65세 이상) 자살 문제는 점차 심각해지고 있는 추세이다. 급격한 인구 고령화 흐름에 따라 이러한 고령층의 자살 추세가 더욱 가속화될 것으로 추정되고 있어, 노인 자살을 예방하고 감소시키는 것이 개인 뿐만 아니라 중요한 사회적 과제로 대두되고 있다. 따라서 본 연구는 한국 노인들을 대상으로 자살 생각의 원인 요인을 파악하고 예측 모델을 개발하는 것을 목적 한다. 본 연구는 한국복지패널조사에서 제공하는 7개년의 패널 데이터를 활용하였으며 자살의 대인 관계 이론(interpersonal theory of suicide)과 사회 해체 이론(social disorganization theory)을 바탕으로 노인 자살의 잠재 원인 요인들을 선정한다. 다음으로 노인의 자살 생각에 대한 원인 요인 파악을 위해 패널 로짓 모형 분석을 진행하고 노인 자살 생각의 예측 모델 개발을 위해 딥 러닝과 머신 러닝 알고리즘을 활용한다. 본 연구는 계량 모형 분석을 통해 검증한 주요 원인 요인들을 활용하여 노인 자살을 예방할 수 있는 구체적인 노인 복지 정책 수립에 기여하고자 한다. 본 연구에서 제시된 예측 모델은 자살 고위험군 노인을 선별하고 관리할 수 있는 방안 마련의 기반을 제공한다. 또한 본 연구는 혼합방법론의 시너지를 보였다는 점에서 학술적 시사점을 가진다.

앙상블 모델과 SHAP Value를 활용한 국내 중고차 가격 예측 모델에 관한 연구: 차종 특성을 중심으로 (A Study on the Prediction Models of Used Car Prices Using Ensemble Model And SHAP Value: Focus on Feature of the Vehicle Type)

  • 임승준;이정호;류춘호
    • 서비스연구
    • /
    • 제14권1호
    • /
    • pp.27-43
    • /
    • 2024
  • 중고차 시장에서 온라인 플랫폼 서비스의 시장 점유율은 지속적으로 증가하고 있다. 또한 중고차 온라인 플랫폼 서비스는 서비스 이용자에게 차량의 제원, 사고 이력, 점검 내역, 세부 옵션, 그리고 중고차의 가격 등을 공개하고 있다. 2023년 현재 국내 자동차 시장에서 SUV 차종의 신차 점유율은 50% 이상으로 확대되었으며, 하이브리드 차종은 신차 판매량이 지난해에 비해 두 배 이상 증가하였다. 이에 따라 이들 차종은 국내 중고차 시장에서도 인기를 끌고 있다. 기존 연구는 전체 차량 또는 브랜드별 차량을 대상으로 머신러닝 모델을 실행하여 중고차 가격 예측 모델을 제안하였다. 반면 국내 자동차 시장에서 SUV와 하이브리드 차종의 인기는 매년 상승하고 있으나, 이들 차종을 대상으로 중고차 가격 예측 모델을 제안한 연구는 찾기 어려웠다. 본 연구는 국내 시장에서 자국 브랜드가 생산한 세단, SUV, 그리고 하이브리드 차종을 대상으로 차량 제원과 옵션, 총 72개의 특성을 활용하여 이들 차종별 가장 우수한 중고차 가격 예측 모델을 선정하였다. 이를 위해 특성 선택으로 Lasso 회귀 모델을 활용하여 특성을 선별한 후 동일 샘플링으로 앙상블 모델을 실행하였다. 그 결과 모든 차종에서 최우수 모델은 CBR 모델로 선정되었으며, 차종별 최우수 모델을 대상으로 Tree SHAP Value의 시각화를 실행하여 특성의 기여도 및 방향성을 확인하였다. 본 연구의 시사점으로 온라인 플랫폼 서비스를 이용하는 매매관계자에게 차종별 중고차 가격 예측 모델을 제안하고 특성의 기여 수준과 방향성을 확인함으로써 이들 간 정보의 비대칭으로 야기된 문제 해결에 지원이 될 것으로 기대한다.

전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증 (Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels)

  • 김정주;류희환;송승우;도승철;이지윤;정호영
    • 한국터널지하공간학회 논문집
    • /
    • 제26권2호
    • /
    • pp.91-111
    • /
    • 2024
  • 전력구 터널은 송전선로 지중화 사업의 일환으로 대부분의 경우 쉴드 TBM을 활용하여 건설된다. TBM 챔버는 터널 내부 중 유일하게 암반과 흙을 마주하는 공간이며, 붕락과 부딪힘 사고 등 사고노출 빈도가 가장 높은 곳이다. 현재 챔버 외부에서 디스크커터 마모정도를 측정할 수 있는 방법이 부재하기 때문에 근로자의 수시점검이 필수적이다. 이에 본 연구에서는 TBM 챔버 내부 안전사고를 예방하고, 챔버 오픈회수 절감을 통해 공사기간 단축의 효과를 기대하기 위하여 디스크커터 마모측정 기술 개념을 정립하고, 시작품을 제작하였다. 선행기술을 고찰하여 자기센서가 굴착환경에서 가장 적합하다고 판단하여, 자기센서, 무선통신 모듈, 전원공급, 외부 케이싱, 그리고 모니터링 시스템을 종합한 마모측정 센서 패키지를 개발하였다. 실제 굴착환경에서 시작품 성능검증을 수행하기 위해 3.6 m 토압식 쉴드 TBM을 활용한 실대형 굴진시험을 수행하였다. 실대형 굴진시험 결과 8개의 시작품 중 5개가 정상적으로 작동하였다. 최대 3,000 kN의 추력과 1.5 RPM의 회전속도 안에서 센서측정값이 무선통신을 통해 시스템에 원활하게 표출되는지 확인하였고, 센서 케이싱이 파손되지 않아 내구성을 확보하는 것으로 분석되었다.

EVA 완충재의 형상변환을 통한 복합구조의 바닥충격음 변이 조사 (Investigation of the level difference of floor impact noises through the shape variation of EVA resilient materials with composite floor structure)

  • 이야긴;이승민;한찬훈
    • 한국음향학회지
    • /
    • 제43권1호
    • /
    • pp.60-71
    • /
    • 2024
  • 본 연구는 일반적인 평평한 에틸렌 비닐 아세테이트(Ethylen Vinyl Acetate, EVA) 완충재의 형상을 변화시켜 다양한 차음소재와 조합하여 복합구조의 바닥충격음 변화를 조사하는 데에 목적이 있다. 바닥충격음 저감에 효과적인 완충재를 선정하기 위해 Flat, Deck, Cavity type의 EVA, EPS, PET 흡음재, PP판넬, 고무발판 등 다양한 완충재를 조합하여 뱅머신을 이용한 1차 실험을 진행하였다. 1차 실험 데이터에 대해 통계분석한 결과 완충재 두께가 40 mm에 가까울수록 바닥충격음 저감효과가 증가하였으며 PET 흡음재, PP시트, 고무발판 등을 조합한 복합완충재에서 바닥충격음 효과가 증가하는 것을 알 수 있었다. 이에따라 2차 실험에서 모든 복합완충재의 두께는 40 mm로 통일하였으며, 1차 실험에 사용된 Flat, Deck, Cavity type 및 EVA를 발판형태로 가공한 Mount type 등 4가지 형태의 복합완충재를 설계하였다. 또한, Mount type을 제외한 3가지 기본 형태에서 각각 PET 흡음재(7 mm)를 추가했을 시 바닥충격음 변화를 살펴보았으며, Mount type의 경우 EVA발판 개수에 따른 바닥충격음 변화에 대해 고무공 충격원을 이용한 2차 실험을 진행하였다. 모든 실험은 공인인증시험기관의 목업실험실에서 진행하였다. 실험 결과, 기본형태의 Flat, Deck, Cavity type에서 PET를 추가할 경우 통계적으로 경량 5 dB ~ 9 dB, 중량 1 dB ~ 5 dB의 저감효과가 나타난 것을 알 수 있었다. 특히, Mount type의 경우 발판 수가 36개 이상일 때 경량 및 중량충격음에서 우수한 것으로 나타났다. 또한, 4가지 기본형태에 따라 동탄성계수가 높아질수록 바닥충격음의 저감이 증가하는 것으로 나타났다.