Chae Jung Park;Yae Won Park;Sung Soo Ahn;Dain Kim;Eui Hyun Kim;Seok-Gu Kang;Jong Hee Chang;Se Hoon Kim;Seung-Koo Lee
Korean Journal of Radiology
/
제23권1호
/
pp.77-88
/
2022
Objective: Our study aimed to evaluate the quality of radiomics studies on brain metastases based on the radiomics quality score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, and the Image Biomarker Standardization Initiative (IBSI) guidelines. Materials and Methods: PubMed MEDLINE, and EMBASE were searched for articles on radiomics for evaluating brain metastases, published until February 2021. Of the 572 articles, 29 relevant original research articles were included and evaluated according to the RQS, TRIPOD checklist, and IBSI guidelines. Results: External validation was performed in only three studies (10.3%). The median RQS was 3.0 (range, -6 to 12), with a low basic adherence rate of 50.0%. The adherence rate was low in comparison to the "gold standard" (10.3%), stating the potential clinical utility (10.3%), performing the cut-off analysis (3.4%), reporting calibration statistics (6.9%), and providing open science and data (3.4%). None of the studies involved test-retest or phantom studies, prospective studies, or cost-effectiveness analyses. The overall rate of adherence to the TRIPOD checklist was 60.3% and low for reporting title (3.4%), blind assessment of outcome (0%), description of the handling of missing data (0%), and presentation of the full prediction model (0%). The majority of studies lacked pre-processing steps, with bias-field correction, isovoxel resampling, skull stripping, and gray-level discretization performed in only six (20.7%), nine (31.0%), four (3.8%), and four (13.8%) studies, respectively. Conclusion: The overall scientific and reporting quality of radiomics studies on brain metastases published during the study period was insufficient. Radiomics studies should adhere to the RQS, TRIPOD, and IBSI guidelines to facilitate the translation of radiomics into the clinical field.
본 연구는 기술력 평가항목 중 기업의 재무안정성과 관련된 항목을 신용평가모형에 반영하여 중소기업뿐만이 아닌 전체 기업을 대상으로 한 신용평가모형의 부도변별력을 높이기 위한 기술력 평가모형의 신용평가모형 내 내재화에 착안하여 시작되었다. 따라서 기술력 평가모형이 부채비율 기준의 고안정성 중소기업을 사전에 판별하는 데 적용될 수 있는지 검증하는 것을 목표로 한다. 대상 기업을 업종(제조업 vs. 비(非)제조업)과 업력(창업기업 vs. 비(非)창업기업)으로 구분하고, 3개년 동안 해당 군집의 평균 부채비율 1/2 이하를 달성한 기업에 대해 고안정성 중소기업으로 정의한 후, C5.0 기법을 적용하여 모형의 판별력을 검증하였다. 분석결과 소항목 수준에서는 업종과 업력에 따라 중요도 간 차이가 있지만, 중항목 수준에서는 기술개발역량이 고안정성 중소기업을 판별하는 중요변수로 도출되었으며, 기업의 업력에 따라 창업 초기에는 자금조달능력(수익창출능력을 고려한 자본구조, 자본비용 및 자금조달 방법의 다양성)이 미래 고안정성 중소기업 여부를 결정하는 중요변수이지만, 업력이 증가함에 따라 지속적인 성과를 가능하게 하는 기술개발 인프라가 재무안정성에 영향을 미치는 중요 변수로 변화한다는 결론을 도출하였다. 업종과 업력에 따른 모형의 분류 정확도는 71~91% 수준이며, 기술력 평가항목을 이용하여 고안정성 중소기업을 판별할 수 있다는 가능성을 확인하였다.
하천 공간의 지표 피복 현황 파악은 하천 관리 및 홍수 재해 예방에 필수적이다. 기존 조사 방법은 전문가에 의한 식생 판독을 통한 식생도 작도 방법이나 식생지수를 활용하는 방법이 활용되어 왔으나, 역동적으로 변화하는 하천 환경을 반영하기에 한계가 있다. 이러한 배경에서 본 연구는 내성천을 대상으로 위성영상 자료를 활용한 랜덤 포레스트 기법을 활용하여 다수 연도의 하천 내 식생 분포를 파악하고, 적용성을 검토하였다. 원격탐사 자료 Sentinel-2 위성 영상을 사용하였으며, 지상 참값(ground truth)은 2016년 내성천 지표 피복 자료를 활용하였다. 랜덤 포레스트 머신러닝 알고리듬을 활용하여 미리 선정된 10개 샘플링 영역으로부터 분류군 별로 1,000개의 표본을 추출하여 훈련 및 검증하였으며, 민감도 분석, 연도별 지표 피복 분석, 정확도 분석을 통하여 적용성을 평가하였다. 연구 결과, 검증 자료 기반의 정확도는 85.1%로 나타났다. 트리 수, 샘플 수, 하천 구역에 대한 민감도 분석 결과, 각각 30개, 800개, 하류에서 효율성이 높았다. 지표 분류 유형은 6개 항목에서 높은 정확도를 보여 지표 피복 분류 결과가 실제 하천 환경을 잘 반영하는 것으로 나타났다. 정확도 분석 결과, 전체 샘플 중 14.9%의 경계오류와 내부오류를 확인하였으며, 지표 피복 분류 중 산발 식생과 초본 식생을 제외한 항목들은 높은 정확도를 보였다. 본 연구에서는 단일 하천을 대상으로 적용하였지만, 보다 정확하고 많은 자료의 구축을 위해서는 다수의 하천에 대해 지표 피복 분류 기법의 적용이 요구된다.
환각은 대형언어모형이나 대형 멀티모달 모형의 활용을 막는 큰 장벽이다. 본 연구에서는 최신 환각 연구 동향을 살펴보기 위해 챗 GPT 등장 이후인 2022년 12월부터 2024년 1월까지 아카이브(arXiv)에서 초록에 '환각'이 포함된 컴퓨터과학 분야 논문 654건을 수집해 빈도분석, 지식연결망 분석, 문헌 검토를 수행했다. 이를 통해 분야별 주요 저자, 주요 키워드, 주요 분야, 분야 간 관계를 분석했다. 분석 결과 '계산 및 언어'와 '인공지능', '컴퓨터비전 및 패턴인식', '기계학습' 분야의 연구가 활발했다. 이어 4개 주요 분야 연구 동향을 주요 저자를 중심으로 데이터 측면, 환각 탐지 측면, 환각 완화 측면으로 나눠 살펴보았다. 주요 연구 동향으로는 지도식 미세조정(SFT)과 인간 피드백 기반 강화학습(RLHF)을 통한 환각 완화, 생각의 체인(CoT) 등 추론 강화, 자동화와 인간 개입의 병행, 멀티모달 AI의 환각 완화에 대한 관심 증가 등을 들 수 있다. 본 연구는 환각 연구 최신 동향을 파악함으로써 공학계는 물론 인문사회계 후속 연구의 토대가 될 것으로 기대한다.
자율주행기술의 발달은 점차 개인화된 통행을 유도하며, 자율주행차량으로의 전환으로 인한 도로운영 측면에서 교통 영향력은 개인차량을 이용한 수요에 의해 가장 큰 영향력을 받는다. 따라서, 교통 영향력 검토를 위해서는 개인통행특성 이해를 기반한 통행발생량 산정이 필요하다. 개인 통행특성 반영이 가능한 Activity-based model(ABM)은 개인의 모든 이동을 다루므로 통행과 통행 사이의 관계에 대한 이해가 선행되어야 한다. 하지만, ABM은 실제 수요예측에서 데이터 구득문제와 같이 많은 한계점이 있다. 따라서, 본 연구에서는 가구통행실태조사자료를 기반으로 통행간 관계를 설명할 수 있는 Tour-based 모형을 활용하였다. 또한, 샘플조사 자료의 전수화를 위해 차량등록대수 및 인구수 데이터를 활용하여 개인차량발생량 보정방안을 제시하였다. 통행발생량 분석결과, KTDB와 비교하였을 때 본 연구에서 전체통행발생량은 약 13% 높았으며, 업무통행의 경우 약 9% 차이로 합리적인 오차수준으로 분석되었다. 결과적으로 본 연구의 궁극적인 목표인 도로운영 측면의 자율주행차량 도입에 따른 수요예측을 위해 Activity-based 모형 구축에 앞서 개인통행특성을 반영할 수 있는 Tour를 기반으로 발생량 보정방안으로 활용될 수 있다.
최근 소셜미디어 이용이 심리적 웰빙에 미치는 영향이 부각되고 있으나 어떤 요소가 소셜미디어 상에서의 관계의 질을 예측할 수 있는지에 대한 연구는 상대적으로 드물다. 본 연구는 머신러닝 기법을 이용하여 COVID-19로 인한 자가격리 동안 인스타그램 활동과 외로움, 우울 등의 심리 상태가 소셜미디어 상에서의 관계의 질을 예측할 수 있는지 알아보고자 하였다. 성인 95명을 대상으로 자가격리 중과 자가격리 해제 후 시점에서 외로움, 인스타그램 활동, 소셜미디어 상에서의 관계, 우울 등에 대해 자기보고식 설문에 응답하도록 하였다. 그 후, 다차원 척도법과 표상유사성분석, 분류분석을 각 시점에 대해 수행하였다. 다차원척도법 결과, 1차원에서 인스타그램 이용 시간과 우울이 다른 변인들과 구별되었으며, 2차원에서 외로움과 수동적 이용이 다른 변인들과 구별되었다. 그 후 소셜미디어 상에서의 관계의 질의 고,저 집단에 대해 표상유사성분석을 실시한 결과, 소셜미디어 상에서의 관계의 질이 높은 집단은 낮은 집단보다 자가격리의 영향을 더 많이 받는 것으로 나타났다. 분류분석 결과에서도 소셜미디어 상에서의 관계의 질 예측 변인이 사회적 고립의 여부에 따라 달라지는 것으로 나타났다. 따라서 본 연구의 결과는 사람들이 사회적 고립 상황에 있지 않을 때 인스타그램 이용 변인과 심리적 변인이 소셜미디어 상에서의 관계를 더 잘 예측할 수 있음을 시사한다.
한국의 노인(65세 이상) 자살 문제는 점차 심각해지고 있는 추세이다. 급격한 인구 고령화 흐름에 따라 이러한 고령층의 자살 추세가 더욱 가속화될 것으로 추정되고 있어, 노인 자살을 예방하고 감소시키는 것이 개인 뿐만 아니라 중요한 사회적 과제로 대두되고 있다. 따라서 본 연구는 한국 노인들을 대상으로 자살 생각의 원인 요인을 파악하고 예측 모델을 개발하는 것을 목적 한다. 본 연구는 한국복지패널조사에서 제공하는 7개년의 패널 데이터를 활용하였으며 자살의 대인 관계 이론(interpersonal theory of suicide)과 사회 해체 이론(social disorganization theory)을 바탕으로 노인 자살의 잠재 원인 요인들을 선정한다. 다음으로 노인의 자살 생각에 대한 원인 요인 파악을 위해 패널 로짓 모형 분석을 진행하고 노인 자살 생각의 예측 모델 개발을 위해 딥 러닝과 머신 러닝 알고리즘을 활용한다. 본 연구는 계량 모형 분석을 통해 검증한 주요 원인 요인들을 활용하여 노인 자살을 예방할 수 있는 구체적인 노인 복지 정책 수립에 기여하고자 한다. 본 연구에서 제시된 예측 모델은 자살 고위험군 노인을 선별하고 관리할 수 있는 방안 마련의 기반을 제공한다. 또한 본 연구는 혼합방법론의 시너지를 보였다는 점에서 학술적 시사점을 가진다.
중고차 시장에서 온라인 플랫폼 서비스의 시장 점유율은 지속적으로 증가하고 있다. 또한 중고차 온라인 플랫폼 서비스는 서비스 이용자에게 차량의 제원, 사고 이력, 점검 내역, 세부 옵션, 그리고 중고차의 가격 등을 공개하고 있다. 2023년 현재 국내 자동차 시장에서 SUV 차종의 신차 점유율은 50% 이상으로 확대되었으며, 하이브리드 차종은 신차 판매량이 지난해에 비해 두 배 이상 증가하였다. 이에 따라 이들 차종은 국내 중고차 시장에서도 인기를 끌고 있다. 기존 연구는 전체 차량 또는 브랜드별 차량을 대상으로 머신러닝 모델을 실행하여 중고차 가격 예측 모델을 제안하였다. 반면 국내 자동차 시장에서 SUV와 하이브리드 차종의 인기는 매년 상승하고 있으나, 이들 차종을 대상으로 중고차 가격 예측 모델을 제안한 연구는 찾기 어려웠다. 본 연구는 국내 시장에서 자국 브랜드가 생산한 세단, SUV, 그리고 하이브리드 차종을 대상으로 차량 제원과 옵션, 총 72개의 특성을 활용하여 이들 차종별 가장 우수한 중고차 가격 예측 모델을 선정하였다. 이를 위해 특성 선택으로 Lasso 회귀 모델을 활용하여 특성을 선별한 후 동일 샘플링으로 앙상블 모델을 실행하였다. 그 결과 모든 차종에서 최우수 모델은 CBR 모델로 선정되었으며, 차종별 최우수 모델을 대상으로 Tree SHAP Value의 시각화를 실행하여 특성의 기여도 및 방향성을 확인하였다. 본 연구의 시사점으로 온라인 플랫폼 서비스를 이용하는 매매관계자에게 차종별 중고차 가격 예측 모델을 제안하고 특성의 기여 수준과 방향성을 확인함으로써 이들 간 정보의 비대칭으로 야기된 문제 해결에 지원이 될 것으로 기대한다.
전력구 터널은 송전선로 지중화 사업의 일환으로 대부분의 경우 쉴드 TBM을 활용하여 건설된다. TBM 챔버는 터널 내부 중 유일하게 암반과 흙을 마주하는 공간이며, 붕락과 부딪힘 사고 등 사고노출 빈도가 가장 높은 곳이다. 현재 챔버 외부에서 디스크커터 마모정도를 측정할 수 있는 방법이 부재하기 때문에 근로자의 수시점검이 필수적이다. 이에 본 연구에서는 TBM 챔버 내부 안전사고를 예방하고, 챔버 오픈회수 절감을 통해 공사기간 단축의 효과를 기대하기 위하여 디스크커터 마모측정 기술 개념을 정립하고, 시작품을 제작하였다. 선행기술을 고찰하여 자기센서가 굴착환경에서 가장 적합하다고 판단하여, 자기센서, 무선통신 모듈, 전원공급, 외부 케이싱, 그리고 모니터링 시스템을 종합한 마모측정 센서 패키지를 개발하였다. 실제 굴착환경에서 시작품 성능검증을 수행하기 위해 3.6 m 토압식 쉴드 TBM을 활용한 실대형 굴진시험을 수행하였다. 실대형 굴진시험 결과 8개의 시작품 중 5개가 정상적으로 작동하였다. 최대 3,000 kN의 추력과 1.5 RPM의 회전속도 안에서 센서측정값이 무선통신을 통해 시스템에 원활하게 표출되는지 확인하였고, 센서 케이싱이 파손되지 않아 내구성을 확보하는 것으로 분석되었다.
본 연구는 일반적인 평평한 에틸렌 비닐 아세테이트(Ethylen Vinyl Acetate, EVA) 완충재의 형상을 변화시켜 다양한 차음소재와 조합하여 복합구조의 바닥충격음 변화를 조사하는 데에 목적이 있다. 바닥충격음 저감에 효과적인 완충재를 선정하기 위해 Flat, Deck, Cavity type의 EVA, EPS, PET 흡음재, PP판넬, 고무발판 등 다양한 완충재를 조합하여 뱅머신을 이용한 1차 실험을 진행하였다. 1차 실험 데이터에 대해 통계분석한 결과 완충재 두께가 40 mm에 가까울수록 바닥충격음 저감효과가 증가하였으며 PET 흡음재, PP시트, 고무발판 등을 조합한 복합완충재에서 바닥충격음 효과가 증가하는 것을 알 수 있었다. 이에따라 2차 실험에서 모든 복합완충재의 두께는 40 mm로 통일하였으며, 1차 실험에 사용된 Flat, Deck, Cavity type 및 EVA를 발판형태로 가공한 Mount type 등 4가지 형태의 복합완충재를 설계하였다. 또한, Mount type을 제외한 3가지 기본 형태에서 각각 PET 흡음재(7 mm)를 추가했을 시 바닥충격음 변화를 살펴보았으며, Mount type의 경우 EVA발판 개수에 따른 바닥충격음 변화에 대해 고무공 충격원을 이용한 2차 실험을 진행하였다. 모든 실험은 공인인증시험기관의 목업실험실에서 진행하였다. 실험 결과, 기본형태의 Flat, Deck, Cavity type에서 PET를 추가할 경우 통계적으로 경량 5 dB ~ 9 dB, 중량 1 dB ~ 5 dB의 저감효과가 나타난 것을 알 수 있었다. 특히, Mount type의 경우 발판 수가 36개 이상일 때 경량 및 중량충격음에서 우수한 것으로 나타났다. 또한, 4가지 기본형태에 따라 동탄성계수가 높아질수록 바닥충격음의 저감이 증가하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.