• 제목/요약/키워드: mVOCs

검색결과 236건 처리시간 0.023초

공단지역 인근거주지의 실내 휘발성유기화합물류 농도 (BTEX and MTBE Concentrations in Residential Indoor Air Near Industrial Complex, Korea)

  • 김호현;임영욱;양지연;이용진;서일;김창수;신동천
    • Environmental Analysis Health and Toxicology
    • /
    • 제22권2호통권57호
    • /
    • pp.103-109
    • /
    • 2007
  • 대기 중 휘발성유기화합물류(VOCs)의 배출원은 매우 다양하며, 특히, 공단에서 배출되는 VOCs 노출로 인한 공단 주변거주지역 주민에게 배출특성 및 물질별 독성에 따라 유해한 건강 영향을 끼칠 가능성이 있다. 또한 일반가정에서의 자체 실내 오염원 또한 휘발성유기화합물류의 노출의 한 원인이다. 본 연구에서는 공단 주변 거주지역 및 동일 행정구역상의 비교지역을 선정하여 공단배출로 인한 실내유입 VOCs 노출 및 자체 실내오염원으로 인한 농도분포 및 기여정도를 조사하였다. 본 연구에서 공단주변 거주지역 및 비교지역의 조사된 실내 평균 농도는 MTBE 2.24, $2.47{\mu}g/m^3$, benzene 9.82, $8.51{\mu}g/m^3$, toluene 103.80, $83.57{\mu}g/m^3$, ethylbenzene 36.45, $15.52{\mu}g/m^3$, xylene 26.27, $1.00{\mu}g/m^34로 비교지역 거주지에 비해 공단지역 주변거주지의 실내공기 중 VOCs 의 농도가 높은 것으로 나타났다. 최종적으로 I/O ratio를 비교한 결과 조사 거주지 모두 자체 실내오염원이 있는 것으로 관찰되었고, 공단지역 주변거주지의 경우 공단의 VOCs 배출로 의해 추가 노출이 되는 것으로 각각 조사되었다.

대형챔버에 의한 생활제품(가구류) 방출오염물질 특성연구 (A study on the chemical emission of furnitures using the large chamber method)

  • 박재형;강윤경;이윤규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.742-747
    • /
    • 2008
  • Formaldehyde(HCHO) and total volatile organic compounds(VOCs) can cause adverse health effects to the building occupants and may contribute to symptoms of 'Sick Building Syndrome'. These chemical contaminants are emitted from furnishings and electronic equipments as well as building materials. The purpose of this study is to measure and analyze VOCs and HCHO emission concentration from furnitures composed of wood materials including various chemicals by the large chamber method. This paper presents experiment results on the emission concentration of TVOCs and HCHO released from furnitures, such as bed, kitchen, sofa and table by a large chamber($24m^3$). The temperature and air humidity in the chamber are controlled to $25{\pm}1{\circ}C$ and $50{\pm}5%$ for this experiment. When the air change rate is $0.5hr^{-1}$, the background concentrations within the large chamber are below $50{\mu}g/m^3$ for TVOC, $5{\mu}g/m^3$ for HCHO and individual VOCs. The study is investigated the characterization of the chemical emission TVOC and HCHO concentrations and unknown VOCs from 6 furnitures.

  • PDF

대도시 및 주변 교외지역의 대기 중 휘발성 유기화합물 농도 비교에 관한 연구 (A Study on the Comparison of Atmospheric Concentrations of Volatile Organic Compounds in a Large Urban Area and a Sub-Urban Area)

  • 박지혜;서영교;백성옥
    • 한국대기환경학회지
    • /
    • 제22권6호
    • /
    • pp.767-778
    • /
    • 2006
  • This study was carried out to evaluate the temporal variations of VOCs at an urban site, and to compare the concentrations of VOCs at an urban site in Daegu with those at a suburban site in Gyeongsan. Three hourly VOC samples in the ambient air were collected using a sequential tube sampler (STS 25, Perkin Elmer) throughout two weeks during May and July representing spring and summer seasons, respectively. The VOC concentrations were determined by an automatic thermal desorption apparatus with GC/MS analysis. A total of 12 VOCs of environmental concern were determined, which are chloroform, benzene, trichloroethylene, toluene, tetra-chloroethylene, ethylbenzene, m+p-xylenes, o-xylene, styrene, 1,3,5- and 1,2,4-trimethylbenzenes. Among 12 target VOCs, the most abundant compound appeared to be toluene, being followed by xylenes. The mean concentrations at the urbn site were 1.2 pub for benzene and 20.4 ppb for toluene (n=221) while the mean levels at the suburban site were 0.9 ppb and 4.3 ppb for benzene and toluene (n=96), respectively. The urban site concentrations were typically several-fold higher than those measured at the suburban site. It was found that general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours, i.e. $9{\sim}12a.m$ and $6{\sim}9p.m$. Statistical investigations were conducted to investigate any significant relationships between VOC concentrations and affecting factors. Calculated correlation coefficients among VOCs were positively significant at a level of 0.05 in most cases. Increased concentrations of toluene in the urban site were estimated to reflect the effect of large industrial sources, mainly from textile industry.

합판 제조용 목재 건조공정에서의 휘발성 유기화합물(VOCs) 배출특성 (Emission Characteristics of VOCs in Drying Process for Plywood Manufacturing)

  • 장정국;김미란
    • 한국환경과학회지
    • /
    • 제17권12호
    • /
    • pp.1381-1390
    • /
    • 2008
  • Emission characteristics of volatile organic compounds (VOCs) were investigated in the flue gas emitted from wood drying process for plywood manufacturing. The moisture content of raw timber was average 48%, and its density was $831.55kg/m^3$. But the moisture content of dried wood is needed less than around 10%, thus the moisture contents of flue gas should be remarkably high(about 18.2 V/V%). Therefore, the vapor in flue gas is equivalent to 320 ton-vapor/day when 1100 ton-wood/day is treated in the wood drying process. The temperature of flue gas ranges from $140^{\circ}C\;to\;150^{\circ}C$ in each dryer stack with exception of the input site of wood(about $110^{\circ}C$). The velocity of flue gas in each stack ranges from 1.7 to 9.7m/sec. In order to assess the concentrations and attribution rate of odorous compounds, it was analyzed about 40 VOCs in the flue gases. It was found that the major odorous compounds were 8 compounds, and the concentrations of major VOCs(ppm) were as follows; benzene: $0.054{\sim}0.052$, toluene: $1.011{\sim}2.547$, ethylbenzene: $0.472{\sim}2.023$, m,p-xylene: $0.504{\sim}3.245$, styrene: $0.015{\sim}0.148$, o-xylene : $0.271{\sim}1.097$, ethanol: $11.2{\sim}32.5$, ${\alpha}$-pinene: $0.908{\sim}10.578$, ${\beta}$-pinene: $0.982{\sim}14.278$. The attribution rate of terpenes (${\alpha}$-pinene, ${\beta}$-pinene) was about 60.56%, and that of aromatics and alcohols was about 22.77%, and 16.67%, respectively. It is suggested that the adequate control device should be used to control both the water soluble and non-soluble compounds because both compounds were mixed in flue gas.

Bioscrubber Trickling Filter(BSTF)의 VOCs 제거 및 운전 특성에 관한 연구 (A Study on the Removal Efficiency of VOCs and Operating Characteristics by Using of Bioscrubber Trickling Filter(BSTE))

  • 박진도;서정호;이학성
    • 한국환경보건학회지
    • /
    • 제31권4호
    • /
    • pp.309-315
    • /
    • 2005
  • Volatile organic compounds (VOCs) and odor materials are major sources of air pollution in Ulsan city, where much chemical plants are located. Therefore, it is necessary to develop a new reactor which can remove VOCs and odor materials effectively and be equipped at the end of pipe easily. A modified reactor (bioscrubber trickling filter, BSTF), which have both characteristics of biofilter and bioscrubber, was developed and tested on its reactivity with several VOCs using two types of media, fiber and activated carbon 4- ceramic(A/C). It was observed that the removal efficiencies of several types of VOCs such as acetaldehyde, ethylalcohol, butanol, diethylamine and triethylamine were up to $95\%$ when they had about 100 ppm of initial concentration and 80 seconds of residence time. Good attachment of microorganisms to both media, where it is thought the reaction efficiency can be determined according to the amount of microorganisms attachment, observed with scanning electron microscopy(SEM). Initial pressure drops of the packed bed with both media were 229 $mmH_2O/m$ at A/C column and 670 $mmH_2O/m$, respectively. However, maximum pressure drop of fiber column during the operation was over 1,647 $mmH_2O/m$. Therefore, it was thought that the fiber material would not suitable to use in the local plant as a packed bed media.

난지도를 중심으로 한 대기 중 BTEX 성분의 농도분포 특성에 대한 연구 (Studies of Ambient BTEX Distribution Characteristics in the Nan-Ji-Do Landfill Site in Seoul)

  • 김기현;김민영;오상인;윤중섭;이강웅
    • 한국대기환경학회지
    • /
    • 제17권6호
    • /
    • pp.463-474
    • /
    • 2001
  • In this study, the concentrations of major anthropogenic volatile organic compounds(VOCs) which include benzene, toluene, m, p-xylene, o-xylene, and ethylbenzene were measured at the Nan-ji-do landfill site during the spring and fall season of 2000. the temporal distribution characteristics of these VOCs were investigated over varying time scale. According to our study, the mean concentration of those species were computed to be 1.65$\pm$2.68(benzene), 9.62$\pm$9.32(toluene), 1.84$\pm$2.90(m, p-xylene), 0.83$\pm$1.43(o-xylene), and 1.17$\pm$1.21 ppb(ethylbenzene). The VOCs levels in the study area are not distinctively higher than the level typically found in urban area that can be subject to the influence of various anthropogenic source processes. Inspection of their temporal trends exhibited various patterns for the diurnal(and seasonal) cycle. Although each species showed distinctive patterns in temporal distribution trends, we were able to find the strong correlations among most concurrently measured VOCs except for benzene.

  • PDF

악취성 VOCs 제거를 위한 전해 산화제 OCl-의 생산 최적화 (Optimization of Electrolytic Oxidant OCl- Production for Malodorous VOCs Removal)

  • 양우영;이태호;류희욱
    • 청정기술
    • /
    • 제27권2호
    • /
    • pp.152-159
    • /
    • 2021
  • 다양한 환경문제를 일으키는 휘발성 유기 화합물(volatile organic compounds, VOCs)은 산업 지대 및 도심의 실내외에서 다양하게 발생한다. 악취성 VOCs는 심미적 불쾌함과 더불어 인체에 심각한 영향을 미칠 수도 있다. 기존에 악취성 VOCs를 저감하는 방식에 비하여, 전기 분해를 통해 생산된 산화제를 이용한 수세정 방식은 오염 물질 저감과 동시에 산화제의 재생이 가능하다는 장점이 있다. 본 연구에서는 염소계 산화제인 OCl-을 생산하기 위한 최적 조건을 연구하였다. 산화 및 환원 전극의 종류와 전해질의 종류, 전해질의 농도 및 전류 밀도를 변화시켰다. 산화 전극은 Ti/IrO2, 환원 전극은 Ti을 사용하였을 때 OCl- 생산이 가장 우수하고 안정적이었다. 전해질의 OCl- 생산 능력은 KCl과 NaCl이 유사하게 나타났으나, 경제적이고 쉽게 구할 수 있는 NaCl이 최적이라고 판단하였다. OCl- 생산 속도가 우수하고 농도가 가장 높게 생산된 NaCl 농도 및 전류 밀도 조건은 0.75 M NaCl, 0.03 A cm-2이었다. 하지만 전력 비용을 고려했을 때 본 실험에서는 1.00 M NaCl, 0.01 A cm-2의 조건의 OCl- 생산이 가장 효율적이었다. 실제 현장 적용시 오염물질의 농도 및 특성에 따라서 전류밀도를 조절하여 OCl-을 생산하는 것이 바람직할 것이다.

서해연안 도시지역의 대기질 특성 연구: 군산시 산업단지와 전주시 도로변에서 VOCs 농도분포 특성 연구 (Characteristics of Air Quality in the West Coastal Urban Atmosphere; Characteristics of VOCs Concentration Measured from an Industrial Complex Monitoring Station at Gunsan and a Roadside Station at Jeonju)

  • 유재연;김득수;채수천;남두천;최양석
    • 한국대기환경학회지
    • /
    • 제26권6호
    • /
    • pp.633-648
    • /
    • 2010
  • The study was performed to elucidate the characteristics of VOCs at distinct monitoring sites in urban atmosphere; one is at a roadside in downtown inland city of Jeonju, and the other is at an industrial site in Gunsan near coastal area. The ambient samples were collected for 24 hours in two-bed adsorbent tubes by using MTS-32 sequential tube sampler equipped with Flex air pump every 16 days in a roadside and a industrial complex from February to November in 2009. VOCs were determined by thermal desorption coupled with GC/MSD. Major individual VOCs in roadside samples were shown as following order in magnitude: toluene>m,p-xylene>ethyl benzene>decanal; and those in the industrial complex samples were as follows: toluene>ethanol>ethyl acetate>decanal>m,pxylene. High benzene concentration in the roadside was more frequently occurred than in the industrial complex. However ambient level of toluene in the industrial complex was higher than that in the road side. Results from roadside sample analysis showed that nonane and 1,2,4-trimethylbenzene were very frequently observed with higher concentrations than those in the industrial complex. It seems that nonane and 1,2,4-trimethylbenzene could be the source characteristics for the roadside air. From the diurnal variation, it was found that concentrations of benzene, ethylbenzene, xylene, nonane and 1,2,4-trimethylbenznene in the roadside were higher during rush hours; but those in the industrial complex were higher from 10 to 16 LST when the industrial activities were animated. On weekly base, the concentration of benzene, toluene, ethylbenzene and m,p-xylene in the roadside were higher specifically on Wednesday, but those in the industrial complex were higher on Sunday. It was found that the general trends of VOCs levels at both sites significantly influence on seasonal changes. The results of factor analysis showed that the VOCs in the roadside were mainly affected by the emission of vehicles and the evaporation of diesel fuel, meanwhile those in the industrial complex were influenced by the evaporation of solvents and vehicular emission.

The Analysis of VOCs by GC/MS with Whole Column Coldtrapping on a Fused Silica Capillary Column in Indoor Environment

  • Dai, Shugui;Zhang, Lin;Bai, Zhipeng
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.829-834
    • /
    • 1995
  • Whole column coldtrapping(WCC) on a fused silica capillary (FSCC)combined with GC/MS analysis was evaluated for use in the investigation of volatile organic compounds(VOCs) in indoor air. Research had indicated that a temperature of $-80^{\circ}C$ is optimal for WCC. Samples were analyzed on a $50m{\times}0.2mm$ cross-linked 5% phenylmethylsilicone fused silica column. Liquid nitrogen was used as the coolant for the peak resolution significantly. The analysis can be performed quickly and conveniently. More than 112 of VOCs were determined in the samples from three typical indoor environment including: (1) a room which had just been decorated involving building materials and paints; (2)a kitchen used for Chinese cooking, and (3) a room had tobacco smoke. The method is could be readily applied to rapid sample screening for VOCs contamination surveys or initial investigations with its valid and simple sampling and analytical technique.

  • PDF

광촉매반응을 이용한 VOCs의 촉매산화 (Catalytic Oxidation of VOCs using Photocatalysis)

  • 이승범;이재동
    • 환경위생공학
    • /
    • 제18권2호
    • /
    • pp.52-59
    • /
    • 2003
  • This study was progressed in photocatalysis of VOCs using $UV/TiO_2$ which was a benign process environmentally. The experiments were peformed to know photodegradation characteristics as crystalline structure of $TiO_2$ which had anatase, rutile and P-25 (anatase : rutile = 70 : 30). The main purpose of this study was to identify photocatalytic characteristics as inlet concentration of reactants, $H_2O$, and residence time. The inlet concentration of VOCs was changed 50, 100 and 200 ppmv, and amount of $H_2O$ was changed 0, 500 and $1000{\;}mg/m^3$, respectively. The deep conversion was increased as the inlet concentration decreased, and the amount of $H_2O$ increased. The deep conversion of benzene had the highest value at $1000{\;}mg/m^3${\;}H_2O$ and 50 ppmv of inlet concentration. The reactivity of reactants was decreased in order benzene > toluene > m-xylene. Also, the photocatalytic deep conversion was increased as residence time increased, because the contact time between reactants and catalyst was increased. In this study, intermediates had not found by GC/MSD analysis. Therefore, the reactants were completely converted to $H_2O{\;}and{\;}CO_2$.