• Title/Summary/Keyword: mRNA levels

Search Result 2,603, Processing Time 0.031 seconds

XIAP Associated Factor 1 (XAF1) Represses Expression of X-linked Inhibitor of Apoptosis Protein (XIAP) and Regulates Invasion, Cell Cycle, Apoptosis, and Cisplatin Sensitivity of Ovarian Carcinoma Cells

  • Zhao, Wen-Jing;Deng, Bo-Ya;Wang, Xue-Mei;Miao, Yuan;Wang, Jian-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2453-2458
    • /
    • 2015
  • Background: X-linked inhibitor of apoptosis protein (XIAP) associated factor 1 (XAF1) exhibits aberrantly low or absent expression in various human malignancies, closely associated with anti-apoptosis and overgrowth of cancer cells. However, limited attention has been directed towards the contribution of XAF1 to invasion, apoptosis, and cisplatin (DDP)-resistance of epithelial ovarian cancer (EOC) cells. This study aimed to evaluate the potential effects of XAF1 on invasion, cell cycle, apoptosis, and cisplatin-resistance by overexpressing XAF1 in SKOV-3 and SKOV-3/DDP cells. Methods and Results: The pEGFP-C1-XAF1 plasmid was transfected into SKOV-3 and SKOV-3/DDP cells, and the expression of XAF1 at both mRNA and protein levels was analyzed by reverse transcription-PCR and Western blotting. Overexpression of XAF1 suppressed XIAP expression in both SKOV-3 and SKOV-3/DDP cells. Transwell invasion assays demonstrated that XAF1 exerted a strong anti-invasive effect in XAF1-overexpressing cells. Moreover, flow cytometry analysis revealed that XAF1 overexpression arrested the cell cycle at G0/G1 phase, and cell apoptosis analysis showed that overexpression of XAF1 enhanced apoptosis of SKOV-3 and SKOV-3/DDP cells apparently by activating caspase-9 and caspase-3. Furthermore, MTT assay confirmed a dose-dependent inhibitory effect of cisplatin in the tested tumor cells, and overexpression of XAF1 increased the sensitivity of SKOV-3 and SKOV-3/DDP cells to cisplatin-mediated antiproliferative effects. Conclusions: In summary, our data indicated that overexpression of XAF1 could suppress XIAP expression, inhibit invasion, arrest cell cycle, promote apoptosis, and confer cisplatin-sensitivity in SKOV-3 and SKOV-3/DDP cells. Therefore, XAF1 may be further assessed as a potential target for the treatment of both cisplatin-resistant and non-resistant EOCs.

Methylated Alteration of SHP1 Complements Mutation of JAK2 Tyrosine Kinase in Patients with Myeloproliferative Neoplasm

  • Yang, Jun-Jun;Chen, Hui;Zheng, Xiao-Qun;Li, Hai-Ying;Wu, Jian-Bo;Tang, Li-Yuan;Gao, Shen-Meng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2219-2225
    • /
    • 2015
  • SHP1 negatively regulates the Janus kinase 2/signal transducer and activator of transcription (JAK2/STAT) signaling pathway, which is constitutively activated in myeloproliferative neoplasms (MPNs) and leukemia. Promoter hypermethylation resulting in epigenetic inactivation of SHP1 has been reported in myelomas, leukemias and other cancers. However, whether SHP1 hypermethylation occurs in MPNs, especially in Chinese patients, has remained unclear. Here, we report that aberrant hypermethylation of SHP1 was observed in several leukemic cell lines and bone marrow mononuclear cells from MPN patients. About 51 of 118 (43.2%) MPN patients including 23 of 50 (46%) polycythaemia vera patients, 20 of 50 (40%) essential thrombocythaemia and 8 of 18 (44.4%) idiopathic myelofibrosis showed hypermethylation by methylation-specific polymerase chain reaction. However, SHP1 methylation was not measured in 20 healthy volunteers. Hypermethylation of SHP1 was found in MPN patients with both positive (34/81, 42%) and negative (17/37, 45.9%) JAK2V617F mutation. The levels of SHP1 mRNA were significantly lower in hypermethylated samples than unmethylated samples, suggesting SHP1 may be epigenetically inactivated in MPN patients. Furthermore, treatment with 5-aza-2'-deoxycytidine (AZA) in K562 cells showing hypermethylation of SHP1 led to progressive demethylation of SHP1, with consequently increased reexpression of SHP1. Meanwhile, phosphorylated JAK2 and STAT3 were progressively reduced. Finally, AZA increased the expression of SHP1 in primary MPN cells with hypermethylation of SHP1. Therefore, our data suggest that epigenetic inactivation of SHP1 contributes to the constitutive activation of JAK2/STAT signaling. Restoration of SHP1 expression by AZA may contribute to clinical treatment for MPN patients.

Whitening Activities of Extracts of Seomaeyakssuk (Artemisia argyi H.) (섬애약쑥 (Artemisia argyi H.) 추출물의 미백활성)

  • Lee, Hea-Jin;Lim, Mi-Hye
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.241-249
    • /
    • 2020
  • This study investigated the whitening activity using seomaeyakssuk (Artemisia argyi H.) extract. Seomaeyakssuk was extracted from hot DW (AAD) and 70% ethanol (AAE). And confirmed safety through assessment of cytotoxicity. Also, whitening activities were measured through changes in the levels of extracellular melanin, melanin synthesis, cellular tyrosinase activity and transcription factor. The results confirmed that significant cytotoxicity does not appear in the concentration range of 50, 100, and 200 ㎍/㎖ of both extracts of this study. The production of extracellular melanin was slowed by AAD 45.0% and AAE 1.3% at 200 ㎍/㎖ concentration. Also, production of intracellular melanin was decreased AAD 37.2% and AAE 24.6%. In the case of intra cellular tyrosinase activity was reduced to AAD 49.2% and AAE 35.6% at 200 ㎍/㎖ concentration. The mRNA expression of tyrosinase, TRP-1 and TRP-2 significantly decreased by AAD 63.0%/AAE 58.0%, AAD 60.0%/AAE 56.0% and AAD 59.0%/AAE 53.0%, respectively, following the 200 ㎍/㎖ sample treatment when compared to the control. Both extracts showed efficient changes of production of whitening-related factor and transcription factor. But AAD was found to have a higher inhibitory effect than AAE. In other words, seomaeyakssuk was showed significant biological activities showing whitening without cytotoxicity. These results will be provided as fundamental data for further development of the new material of functional cosmetics to the results above.

Oral Administration of β-Glucan and Lactobacillus plantarum Alleviates Atopic Dermatitis-Like Symptoms

  • Kim, In Sung;Lee, Seung Ho;Kwon, Young Min;Adhikari, Bishnu;Kim, Jeong A;Yu, Da Yoon;Kim, Gwang Il;Lim, Jong Min;Kim, Sung Hak;Lee, Sang Suk;Moon, Yang Soo;Choi, In Soon;Cho, Kwang Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1693-1706
    • /
    • 2019
  • Atopic dermatitis (AD) is a chronic inflammatory skin disease of mainly infants and children. Currently, the development of safe and effective treatments for AD is urgently required. The present study was conducted to investigate the immunomodulatory effects of yeast-extracted β-1,3/1,6-glucan and/or Lactobacillus plantarum (L. plantarum) LM1004 against AD-like symptoms. To purpose, β-1,3/1,6-glucan and/or L. plantarum LM1004 were orally administered to AD-induced animal models of rat (histamine-induced vasodilation) and mouse (pruritus and contact dermatitis) exhibiting different symptoms of AD. We then investigated the treatment effects on AD-like symptoms, gene expression of immune-related factors, and gut microbiomes. Oral administration of β-1,3/1,6-glucan (0.01 g/kg initial body weight) and/or 2 × 1012 cells/g L. plantarum LM1004 (0.01 g/kg initial body weight) to AD-induced animal models showed significantly reduced vasodilation in the rat model, and pruritus, edema, and serum histamine in the mouse models (p < 0.05). Interestingly, β-1,3/1,6-glucan and/or L. plantarum LM1004 significantly decreased the mRNA levels of Th2 and Th17 cell transcription factors, while the transcription factors of Th1 and Treg cells, galactin-9, filaggrin increased, which are indicative of enhanced immunomodulation (p < 0.05). Moreover, in rats with no AD induction, the same treatments significantly increased the relative abundance of phylum Bacteroidetes and the genus Bacteroides. Furthermore, bacterial taxa associated with butyrate production such as, Lachnospiraceae and Ruminococcaceae at family, and Roseburia at genus level were increased in the treated groups. These findings suggest that the dietary supplementation of β-1,3/1,6-glucan and/or L. plantarum LM1004 has a great potential for treatment of AD as well as obesity in humans through mechanisms that might involve modulation of host immune systems and gut microbiota.

Dietary Aloe Vera Gel Powder and Extract Inhibit Azoxymethane-induced Colorectal Aberrant Crypt Foci in Mice Fed a High-fat Diet

  • Chihara, Takeshi;Shimpo, Kan;Kaneko, Takaaki;Beppu, Hidehiko;Higashiguchi, Takashi;Sonoda, Shigeru;Tanaka, Miyuki;Yamada, Muneo;Abe, Fumiaki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.683-687
    • /
    • 2015
  • Aloe vera gel exhibits protective effects against insulin resistance as well as lipid-lowering and anti-diabetic effects. The anti-diabetic compounds in this gel were identified as Aloe-sterols. Aloe vera gel extract (AVGE) containing Aloe-sterols has recently been produced using a new procedure. We previously reported that AVGE reduced large-sized intestinal polyps in Apc-deficient Min mice fed a high fat diet (HFD), suggesting that Aloe vera gel may protect against colorectal cancer. In the present study, we examined the effects of Aloe vera gel powder (AVGP) and AVGE on azoxymethane-induced colorectal preneoplastic aberrant crypt foci (ACF) in mice fed a HFD. Male C57BL/6J mice were given a normal diet (ND), HFD, HFD containing 0.5% carboxymethyl cellulose solution, which was used as a solvent for AVGE (HFDC), HFD containing 3% or 1% AVGP, and HFDC containing 0.0125% (H-) or 0.00375% (L-) AVGE. The number of ACF was significantly lower in mice given 3% AVGP and H-AVGE than in those given HFD or HFDC alone. Moreover, 3% AVGP, H-AVGE and L-AVGE significantly decreased the mean Ki-67 labeling index, assessed as a measure of cell proliferation in the colonic mucosa. In addition, hepatic phase II enzyme glutathione S-transferase mRNA levels were higher in the H-AVGE group than in the HFDC group. These results suggest that both AVGP and AVGE may have chemopreventive effects on colorectal carcinogenesis under the HFD condition. Furthermore, the concentration of Aloe-sterols was similar between 3% AVGP and H-AVGE, suggesting that Aloe-sterols were the main active ingredients in this experiment.

Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide (당지질로 유도한 염증반응에서 Piceatannol의 항염증 기전 연구)

  • Cho, Han-Jin;Shim, Jae-Hoon;So, Hong-Seob;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1226-1234
    • /
    • 2012
  • 3,4,3',5'-Tetrahydroxy-trans-stilbene (piceatannol) is a derivative of resveratrol with a variety of biological activities, including anti-inflammatory, anti-proliferative, and anti-cancer activities. We assessed the mechanisms by which piceatannol inhibits inflammatory responses using lipopolysaccharide (LPS)-treated Raw264.7 murine macrophages. Piceatannol (0~10 ${\mu}mol/L$) decreased LPS-induced release of nitric oxide, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and inhibited LPS-induced protein expression of inducible nitric oxide synthase (iNOS). Activation of nuclear factor-kappaB (NF-${\kappa}B$), activator protein (AP)-1, and signal transducer and activator of transcription 3 (STAT3) are crucial steps during an inflammatory response. Piceatannol prevented LPS-induced degradation of inhibitor of ${\kappa}B$ ($I{\kappa}B$), translocation of p65 to the nucleus, and phosphorylation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Additionally, piceatannol inhibited LPS-induced phosphorylation of STAT3 and IL-6-induced translocation of STAT3 to the nucleus. Furthermore, piceatannol increased the protein and mRNA levels of hemeoxygenase (HO)-1, the rate-limiting enzyme of heme catabolism that plays a critical role in mediating antioxidant and anti-inflammatory effects. Piceatannol further induced antioxidant response elements (ARE)-driven luciferase activity in Raw264.7 cells transfected with an ARE-luciferase reporter construct containing the enhancer 2 and minimal promoter region of HO-1. These results suggest that piceatannol exerts anti-inflammatory effects via the down-regulation of iNOS expression and up-regulation of HO-1 expression.

Hypocholesterolemic Effects of Green Tea in Cholesterol-Fed Rats (고 콜레스테롤 식이 투여 흰쥐에 있어서 녹차의 콜레스테롤 저하 효과)

  • 진현화;양정례;정종화;김양하
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.47-51
    • /
    • 2004
  • Green tea, which is high in polyphenols, is thought to have hypocholesterolemic effects. The present study was performed to further elucidate the hypocholesterolemic actions of green tea, specially the catechin and (-)-epigallocatechin gallate (EGCG) for their effects on the diet-induced hypercholesterolemia in rats. Male Sprague-Dawley rats were fed with green tea-free diet (control), diets containing 4% green tea powder (GTP), 1.0% green tea catechin (catechin) or 0.5% epigallocatechin gallate (EGCG) for 7 wks. All diets that were provided green tea contained approximately 0.5% EGCG Hypercholesterolemia was induced by adding 1% cholesterol and 0.5% cholic acid to all diets. There were no differences in food intake among groups. The green tea treatments showed significant improvement in the serum levels of total cholesterol, LDL-cholesterol, triacylglycerides and atherogenic index in the following order; EGCG>Catechin>GTP (p<0.05). The serum HDL-cholesterol level was highest in the EGCG-treated group. The catechin or EGCG diet up-regulated by 5 times the enzyme activity of hepatic cholesterol 7$\alpha$ -hydroxylase (CYP7Al) compared to control diet (p<0.05). Hepatic CYP7Al mRNA level paralleled tile increases in the CYP7Al activity. These results suggest that the EGCG in the green tea may account for the hypocholesterolemic effect by the induction of CYP7Al gene expression.

Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities

  • Yang, Sungjae;Kim, Yong;Jeong, Deok;Kim, Jun Ho;Kim, Sunggyu;Son, Young-Jin;Yoo, Byong Chul;Jeong, Eun Jeong;Kim, Tae Woong;Han Lee, In-Sook;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • (E)-3-Phenyl-1-(2-pyrrolyl)-2-propenone (PPP) is a pyrrole derivative of chalcone, in which the B-ring of chalcone linked to ${\beta}$-carbon is replaced by pyrrole group. While pyrrole has been studied for possible Src inhibition activity, chalcone, especially the substituents on the B-ring, has shown pharmaceutical, anti-inflammatory, and anti-oxidant properties via inhibition of NF-${\kappa}B$ activity. Our study is aimed to investigate whether this novel synthetic compound retains or enhances the pharmaceutically beneficial activities from the both structures. For this purpose, inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 cells were analyzed. Nitric oxide (NO) production, inducible NO synthase (iNOS) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) mRNA expression, and the intracellular inflammatory signaling cascade were measured. Interestingly, PPP strongly inhibited NO release in a dose-dependent manner. To further investigate this anti-inflammatory activity, we identified molecular pathways by immunoblot analyses of nuclear fractions and whole cell lysates prepared from LPS-stimulated RAW264.7 cells with or without PPP pretreatment. The nuclear levels of p50, c-Jun, and c-Fos were significantly inhibited when cells were exposed to PPP. Moreover, according to the luciferase reporter gene assay after cotransfection with either TRIF or MyD88 in HEK293 cells, NF-${\kappa}B$-mediated luciferase activity dose-dependently diminished. Additionally, it was confirmed that PPP dampens the upstream signaling cascade of NF-${\kappa}B$ and AP-1 activation. Thus, PPP inhibited Syk, Src, and TAK1 activities induced by LPS or induced by overexpression of these genes. Therefore, our results suggest that PPP displays anti-inflammatory activity via inhibition of Syk, Src, and TAK1 activity, which may be developed as a novel anti-inflammatory drug.

Prognostic Significance of Hes-1, a Downstream Target of Notch Signaling in Hepatocellular Carcinoma

  • Zou, Jing-Huai;Xue, Tong-Chun;Sun, Chun;Li, Yan;Liu, Bin-Bin;Sun, Rui-Xia;Chen, Jie;Ren, Zheng-Gang;Ye, Sheng-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3811-3816
    • /
    • 2015
  • Background: Hairy and enhancer of split 1 (Hes-1) protein is a downstream target of Notch signaling and is a basic helix-loop-helix transcriptional repressor. However, definitive evidence for a role in hepatocellular carcinoma (HCC) cells has not been reported. Here, Hes-1 was revealed to an important component of the Notch signaling cascade in HCC cell lines possessing different potential for lung metastasis. Materials and Methods: RNAi mediated by plasmid constructs was used to analyze the role of Hes-1 in MHCC-97L HCC cells by assessing proliferation, apoptosis, cell migration and matrigel invasion following transfection. Hes-1 protein expression analysis in HCC tissue was also conducted by immunohistochemistry. Results: Our studies revealed that Hes-1 was decreased in HCC cell lines with higher lung metastasis potential at both the mRNA and protein levels. Down-regulation of the Hes-1 gene in MHCC-97L cells resulted in increased cell proliferation, reduced apoptosis and increased migration and invasion. Conclusions: Hes-1 has potential prognostic value in post-surgical HCC patients and may be an independent prognostic indicator for overall survival and tumor recurrence. These findings have important implications for understanding the mechanisms by which Hes-1 participates in tumor proliferation and invasion.

Reconstructed Adeno-Associated Virus with the Extracellular Domain of Murine PD-1 Induces Antitumor Immunity

  • Elhag, Osama A.O.;Hu, Xiao-Jing;Wen-Ying, Zhang;Li, Xiong;Yuan, Yong-Ze;Deng, Ling-Feng;Liu, De-Li;Liu, Ying-Le;Hui, Geng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4031-4036
    • /
    • 2012
  • Background: The negative signaling provided by interactions of the co-inhibitory molecule, programmed death-1 (PD-1), and its ligands, B7-H1 (PD-L1) and B7-DC (PD-L2), is a critical mechanism contributing to tumor evasion; blockade of this pathway has been proven to enhance cytotoxic activity and mediate antitumor therapy. Here we evaluated the anti-tumor efficacy of AAV-mediated delivery of the extracellular domain of murine PD-1 (sPD-1) to a tumor site. Material and Methods: An rAAV vector was constructed in which the expression of sPD-1, a known negative regulator of TCR signals, is driven by human cytomegalovirus immediate early promoter (CMV-P), using a triple plasmid transfection system. Tumor-bearing mice were then treated with the AAV/sPD1 construct and expression of sPD-1 in tumor tissues was determined by semi quantitative RT-PCR, and tumor weights and cytotoxic activity of splenocytes were measured. Results: Analysis of tumor homogenates revealed sPD-1 mRNA to be significantly overexpressed in rAAV/sPD-1 treated mice as compared with control levels. Its use for local gene therapy at the inoculation site of H22 hepatoma cells could inhibit tumor growth, also enhancing lysis of tumor cells by lymphocytes stimulated specifically with an antigen. In addition, PD-1 was also found expressed on the surfaces of activated CD8+ T cells. Conclusion: This study confirmed that expression of the soluble extracellular domain of PD-1 molecule could reduce tumor microenvironment inhibitory effects on T cells and enhance cytotoxicity. This suggests that it might be a potential target for development of therapies to augment T-cell responses in patients with malignancies.