• Title/Summary/Keyword: mRNA levels

Search Result 2,603, Processing Time 0.038 seconds

A heat shock cognate 70 gene in the endoparasitoid, Pteromalus puparum, and its expression in relation to thermal stress

  • Wang, Huan;Dong, Sheng-Zhang;Li, Kai;Hu, Cui;Ye, Gong-Yin
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.388-393
    • /
    • 2008
  • The Pphsc70 (heat shock cognate 70) gene was isolated from the endoparasitoid Pteromalus puparum and then characterized. The full-length cDNA was 2204 base pair (bp) and contained a single 1968 bp ORF that encoded a polypeptide of 656 amino acids with a predicted molecular mass of 71.28 kDa. Phylogenetic analysis based on Hsc70 amino acid sequences from fifteen insect species agreed with the present phylogeny. In addition, genomic DNA confirmed the presence of three introns located at the coding region as well as the 5'UTR. A significant elevation of Pphsc70 expression was observed following heat treatment, however, continued exposure to heat shock or recovery caused the expression of induced mRNA to gradually decline to levels that were significantly lower than those of control pupae (P < 0.05). In addition, a significant increase was observed in the emergence rate of pupae that were preheated at $40^{\circ}C$ and then exposed to $50^{\circ}C$ for 1 h when compared with the pupae that were not preheated, but instead directly exposed to $50^{\circ}C$. Taken together, these results revealed that exposure to gradually increasing temperatures can enhance an insects thermo-tolerance.

PEP-1-FK506BP12 inhibits matrix metalloproteinase expression in human articular chondrocytes and in a mouse carrageenan-induced arthritis model

  • Hwang, Hyun Sook;Park, In Young;Kim, Dae Won;Choi, Soo Young;Jung, Young Ok;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.407-412
    • /
    • 2015
  • The 12 kDa FK506-binding protein (FK506BP12), an immunosuppressor, modulates T cell activation via calcineurin inhibition. In this study, we investigated the ability of PEP-1-FK506BP12, consisting of FK506BP12 fused to the protein transduction domain PEP-1 peptide, to suppress catabolic responses in primary human chondrocytes and in a mouse carrageenan-induced paw arthritis model. Western blotting and immunofluorescence analysis showed that PEP-1-FK506BP12 efficiently penetrated chondrocytes and cartilage explants. In interleukin-1β (IL-1β)-treated chondrocytes, PEP-1-FK506BP12 significantly suppressed the expression of catabolic enzymes, including matrix metalloproteinases (MMPs)-1, -3, and -13 in addition to cyclooxygenase-2, at both the mRNA and protein levels, whereas FK506BP12 alone did not. In addition, PEP-1-FK506BP12 decreased IL-1β-induced phosphorylation of the mitogen-activated protein kinase (MAPK) complex (p38, JNK, and ERK) and the inhibitor kappa B alpha. In the mouse model of carrageenan-induced paw arthritis, PEP-1-FK506BP12 suppressed both carrageenan-induced MMP-13 production and paw inflammation. PEP-1-FK506BP12 may have therapeutic potential in the alleviation of OA progression. [BMB Reports 2015; 48(7): 407-412]

Chitosan Oligosaccharides Inhibit Adipogenesis in 3T3-L1 Adipocytes

  • Cho, Eun-Jae;Rahman, Atiar;Kim, Sang-Woo;Baek, Yu-Mi;Hwang, Hye-Jin;Oh, Jung-Young;Hwang, Hee-Sun;Lee, Sung-Hak;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.80-87
    • /
    • 2008
  • The 3T3-L1 cell line is a well-established and commonly used in vitro model to assess adipocyte differentiation. Over the course of several days, confluent 3T3-L1 cells can be converted to adipocytes in the presence of an adipogenic cocktail. In this study, the effects of chitosan oligosaccharides (CO) on adipocyte differentiation of 3T3-L1 cells were studied. The CO significantly decreased lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. The low molecular mass CO (1-3 kDa) were the most effective at inhibiting adipocyte differentiation. Moreover, mRNA expression levels of both CCAAT/enhancer-binding protein (C/EBP) ${\alpha}$ and peroxisome proliferator-activated receptor (PPAR) ${\gamma}$, the key adipogenic transcription factors, were markedly decreased by CO treatments. CO also significantly down regulated adipogenic marker proteins such as leptin, adiponectin, and resistin. Our results suggest a role for CO as antiobesity agents by inhibiting adipocyte differentiation mediated through the down regulated expression of adipogenic transcription factors and other specific genes.

Optimized Medium Improves Expression and Secretion of Extremely Thermostable Bacterial Xylanase, XynB, in Kluyveromyces lactis

  • Yin, Tie;Miao, Li-Li;Guan, Fei-Fei;Wang, Gui-Li;Peng, Qing;Li, Bing-Xue;Guan, Guo-Hua;Li, Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1471-1480
    • /
    • 2010
  • An extremely thermostable xylanase gene, xynB, from the hyperthermophilic bacterium Thermotoga maritima MSB8 was successful expressed in Kluyveromyces lactis. The response surface methodology (RSM) was also applied to optimize the medium components for the production of XynB secreted by the recombinant K. lactis. The secretion level (102 mg/l) and enzyme activity (49 U/ml) of XynB in the optimized medium (yeast extract, lactose, and urea; YLU) were much higher than those (56 mg/l, 16 U/ml) in the original medium (yeast extract, lactose, and peptone; YLP). The secretory efficiency of mature XynB was also improved when using the YLU medium. When the mRNA levels of 13 characterized secretion-related genes in the K. lactis cultured in YLP and YLU were detected using a semiquantitative RT-PCR method, the unfolded protein response (UPR)-related genes, including ero1, hac1, and kar2, were found to be up-regulated in the K. lactis cultured in YLU. Therefore, the nutrient ingredients, especially the nitrogen source, were shown to have a significant influence on the XynB secretory efficiency of the host K. lactis.

Inhibition of MMP-2 and MMP-9 activities by solvent-partitioned Sargassum horneri extracts

  • Karadeniz, Fatih;Lee, Seul-Gi;Oh, Jung Hwan;Kim, Jung-Ae;Kong, Chang-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.16.1-16.7
    • /
    • 2018
  • Background: Matrix metalloproteinases (MMPs) are linked with several complications such as metastasis of cancer progression, oxidative stress, and hepatic fibrosis. Brown seaweeds are being extensively studied for their bioactive molecule content against cancer progression. In this context, Sargassum horneri was reported to possess various bioactivities including antiviral, antimicrobial, and anti-inflammatory partly due to its phenolic compound content. Methods: In this study, potential of S. horneri was evaluated through anti-MMP effect in HT1080 fibrosarcoma cells. S. horneri crude extract was fractionated with organic solvents, namely, water ($H_2O$), n-buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and n-hexane. The non-toxicity of fraction samples (Sargassum horneri solvent-partitioned extracts (SHEs)) was confirmed by cell-viability assay. SHEs were tested for their ability to inhibit MMP enzymatic activity through gelatin digestion evaluation and cell migration assay. Expressions of MMP-2 and MMP-9 and tissue inhibitors of MMP (TIMPs) were evaluated by reverse transcription and Western blotting. Results: All fractions inhibited the enzymatic activities of MMP-2 and MMP-9 according to gelatin zymography. Except $H_2O$ fraction, fractions hindered the cell migration significantly. All tested fractions suppressed both mRNA and protein levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Conclusion: Overall, current results suggested that S. horneri has potential to be a good source for anti-MMP agents, and further investigations are underway for better understanding of the action mechanism and isolation and elucidation of the bioactive molecules.

Alteration of Striatal Tetrahydrobiopterin in Iron-Induced Unilateral Model of Parkinson's Disease

  • Aryal, Bijay;Lee, Jin-Koo;Kim, Hak Rim;Kim, Hyung-Gun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2014
  • It has been suggested that transition metal ions such as iron can produce an oxidative injuries to nigrostriatal dopaminergic neurons, like Parkinson's disease (PD) and subsequent compensative increase of tetrahydrobiopterin ($BH_4$) during the disease progression induces the aggravation of dopaminergic neurodegeneration in striatum. It had been established that the direct administration of $BH_4$ into neuron would induce the neuronal toxicity in vitro. To elucidate a role of $BH_4$ in pathogenesis in the PD in vivo, we assessed the changes of dopamine (DA) and $BH_4$ at striatum in unilateral intranigral iron infused PD rat model. The ipsistriatal DA and $BH_4$ levels were significantly increased at 0.5 to 1 d and were continually depleting during 2 to 7 d after intranigral iron infusion. The turnover rate of $BH_4$ was higher than that of DA in early phase. However, the expression level of GTP-cyclohydrolase I mRNA in striatum was steadily increased after iron administration. These results suggest that the accumulation of intranigral iron leads to generation of oxidative stress which damage to dopaminergic neurons and causes increased release of $BH_4$ in the dopaminergic neuron. The degenerating dopaminergic neurons decrease the synthesis and release of both $BH_4$ and DA in vivo that are relevance to the progression of PD. Based on these data, we propose that the increase of $BH_4$ can deteriorate the disease progression in early phase of PD, and the inhibition of $BH_4$ increase could be a strategy for PD treatment.

Tetramethylpyrazine reverses anxiety-like behaviors in a rat model of post-traumatic stress disorder

  • Lee, Bombi;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.525-538
    • /
    • 2018
  • Post-traumatic stress disorder (PTSD) is a trauma-induced psychiatric disorder characterized by impaired fear extermination, hyperarousal, and anxiety that may involve the release of monoamines in the fear circuit. The reported pharmacological properties of tetramethylpyrazine (TMP) include anti-cancer, anti-diabetic, anti-atherosclerotic, and neuropsychiatric activities. However, the anxiolytic-like effects of TMP and its mechanism of action in PTSD are unclear. This study measured several anxiety-related behavioral responses to examine the effects of TMP on symptoms of anxiety in rats after single prolonged stress (SPS) exposure by reversing the serotonin (5-HT) and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Rats were given TMP (10, 20, or 40 mg/kg, i.p.) for 14 days after SPS exposure. Administration of TMP significantly reduced grooming behavior, increased the time spent and number of visits to the open arm in the elevated plus maze test, and significantly increased the number of central zone crossings in the open field test. TMP administration significantly reduced the freezing response to contextual fear conditioning and significantly restored the neurochemical abnormalities and the SPS-induced decrease in 5-HT tissue levels in the prefrontal cortex and hippocampus. The increased 5-HT concentration during TMP treatment might be partially attribute to the tryptophan and 5-hydroxyindoleacetic acid mRNA level expression in the hippocampus of rats with PTSD. These findings support a role for reducing the altered serotonergic transmission in rats with PTSD. TMP simultaneously attenuated the HPA axis dysfunction. Therefore, TMP may be useful for developing an agent for treating psychiatric disorders, such those observed in patients with PTSD.

Induction of Apoptotic Cell Death by Sabaek-san Extract in Human Lung Cancer A549 Cells (사백산 추출물에 의한 인체 폐암세포의 Apoptosis 유도 기전에 관한 연구)

  • Lee Jae Hun;Kang Byong Ryeung;Kam Cheol Woo;Park Dong Il;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.451-456
    • /
    • 2003
  • We investigated the effects of Sabaek-san (SBS) water extract on the growth of human lung carcinoma A549 cells. Upon treatment with SBS extract, a concentration-dependent inhibition of cell viability was observed and cells developed many of the hallmark features of apoptosis. including condensation of chromatin. Flow cytometry analysis confirmed that SBS treatment increased populations of apoptotic-sub G1 phase. In addition. proteolytic cleavages of poly(ADP-ribose) polymerase and β-catenin protein were observed after treatment of SBS extract. These apoptotic effects of SBS in A549 cells were associated with marked inhibition of Bcl-2 and Bel-xL mRNA in a dose-dependent manner. however the levels of Bax expression were not affected, SBS treatment also induced a proteolytic activation of caspase-3. which is believed to play a central role In the apoptotic signaling pathway. The previous and present results indicated that SBS-induced inhibition of lung cancer cell proliferation is associated with the blockage of G1/S progression and the induction of apoptosis.

Gambogic Acid Disrupts Toll-like Receptor4 Activation by Blocking Lipopolysaccharides Binding to Myeloid Differentiation Factor 2

  • Lee, Jin Young;Lee, Byung Ho;Lee, Joo Young
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • Our body's immune system has defense mechanisms against pathogens such as viruses and bacteria. Immune responses are primarily initiated by the activation of toll-like receptors (TLRs). In particular, TLR4 is well-characterized and is known to be activated by gram-negative bacteria and tissue damage signals. TLR4 requires myeloid differentiation factor 2 (MD2) as a co-receptor to recognize its ligand, lipopolysaccharides (LPS), which is an extracellular membrane component of gram-negative bacteria. Gambogic acid is a xanthonoid isolated from brownish or orange resin extracted from Garcinia hanburyi. Its primary effect is tumor suppression. Since inflammatory responses are related to the development of cancer, we hypothesized that gambogic acid may regulate TLR4 activation. Our results demonstrated that gambogic acid decreased the expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6, IL-12, and $IL-1{\beta}$) in both mRNA and protein levels in bone marrow-derived primary macrophages after stimulation with LPS. Gambogic acid did not inhibit the activation of Interferon regulatory factor 3 (IRF3) induced by TBK1 overexpression in a luciferase reporter gene assay using IFN-${\beta}$-PRD III-I-luc. An in vitro kinase assay using recombinant TBK1 revealed that gambogic acid did not directly inhibit TBK1 kinase activity, and instead suppressed the binding of LPS to MD2, as determined by an in vitro binding assay and confocal microscopy analysis. Together, our results demonstrate that gambogic acid disrupts LPS interaction with the TLR4/MD2 complex, the novel mechanism by which it suppresses TLR4 activation.

Rifampicin Alleviates Atopic Dermatitis-Like Response in vivo and in vitro

  • Kim, Seung Hyun;Lee, Ki Man;Lee, Geum Seon;Seong, Ju-Won;Kang, Tae Jin
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.634-640
    • /
    • 2017
  • Atopic dermatitis (AD) is a common inflammatory skin disorder mediated by inflammatory cells, such as macrophages and mast cells. Rifampicin is mainly used for the treatment of tuberculosis. Recently, it was reported that rifampicin has anti-inflammatory and immune-suppressive activities. In this study, we investigated the effect of rifampicin on atopic dermatitis in vivo and in vitro. AD was induced by treatment with 2, 4-dinitrochlorobenzene (DNCB) in NC/Nga mice. A subset of mice was then treated with rifampicin by oral administration. The severity score and scratching behavior were alleviated in the rifampicin-treated group. Serum immunoglobulin E (IgE) and interleukin-4 (IL-4) levels were also ameliorated in mice treated with rifampicin. We next examined whether rifampicin has anti-atopic activity via suppression of mast cell activation. Rifampicin suppressed the release of ${\beta}$-hexosaminidase and histamine from human mast cell (HMC)-1 cultures stimulated with compound 48/80. Treatment with rifampicin also inhibited secretion of inflammatory mediators, such tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$) and prostaglandin $D_2$ ($PGD_2$), in mast cells activated by compound 48/80. The mRNA expression of cyclooxygenase 2 (COX-2) was reduced in the cells treated with rifampicin in a concentration-dependent manner. These results suggest that rifampicin can be used to treat atopic dermatitis.