• Title/Summary/Keyword: mIMCD-3 cell

Search Result 2, Processing Time 0.019 seconds

Molecular Analysis of AQP2 Promoter. I. cAMP-dependent Regulation of Mouse AQP2 Gene

  • Park, Mi-Young;Lee, Yong-Hwan;Bae, Hae-Rahn;Lee, Ryang-Hwa;Lee, Sang-Ho;Jung, Jin-Sup
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.157-164
    • /
    • 1999
  • To determine molecular mechanisms of Aquaporin-CD (AQP2) gene regulation, the promoter region of the AQP2 gene was examined by transiently transfecting a promoter-luciferase reporter fusion gene into mouse renal collecting duct cell lines such as mIMCD-3, mIMCD-K2, and M-1 cells, and NIH3T3 mouse embryo fibroblast cells. PCR-Southern analysis reveals that mIMCD-3 and mIMCD-K2 cells express AQP2, but M-1 and NIH3T3 cells do not, and that the treatment with cpt-cAMP $(400\;{\mu}M)$) or forskolin/isobutylmethylxanthine (IBMX) increased the AQP2 expression in IMCD cells. In both IMCD and NIH3T3 cells, the constructs containing the promoter of AQP2 gene showed promoter activities, indicating lack of tissue-specific element in the 1.4 kb 5'-flanking region of the mouse AQP2 gene. Luciferase activity in the IMCD cells transfected with the construct containing 5-flanking region showed responsiveness to cpt-cAMP, indicating that the 1.4 kb 5'-flanking region contains the element necessary for the regulatory mechanism by cAMP. The promoter-luciferase constructs which do not have a cAMP-responsible element (CRE) still showed the cAMP responsiveness in IMCD cells, but not in NIH3T3 cells. Increase in medium osmolarity did not affect AQP2 promoter activity in mIMCD-K2 cells. These results demonstrate that AQP2 gene transcription is increased with cAMP treatment through multiple motifs including CRE in the 5'-flanking region of the gene in vitro, and the regulatory mechanism may be important for in vivo regulation of AQP2 expression.

  • PDF

Mxi1 influences cyst formation in three-dimensional cell culture

  • Yook, Yeon-Joo;Yoo, Kyung-Hyun;Song, Seon-Ah;Seo, Min-Ji;Ko, Je-Yeong;Kim, Bo-Hye;Lee, Eun-Ji;Chang, Eun-Sun;Woo, Yu-Mi;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.189-193
    • /
    • 2012
  • Cyst formation is a major characteristic of ADPKD and is caused by the abnormal proliferation of epithelial cells. Renal cyst formation disrupts renal function and induces diverse complications. The mechanism of cyst formation is unclear. mIMCD-3 cells were established to develop simple epithelial cell cysts in 3-D culture. We confirmed previously that Mxi1 plays a role in cyst formation in Mxi1-deficient mice. Cysts in Mxi1 transfectanted cells were showed by collagen or mebiol gels in 3-D cell culture system. Causative genes of ADPKD were measured by q RT-PCR. Herein, Mxi1 transfectants rarely formed a simple epithelial cyst and induced cell death. Overexpression of Mxi1 resulted in a decrease in the PKD1, PKD2 and c-myc mRNA relating to the pathway of cyst formation. These data indicate that Mxi1 influences cyst formation of mIMCD-3 cells in 3-D culture and that Mxi1 may control the mechanism of renal cyst formation.