• Title/Summary/Keyword: mGnRH

Search Result 106, Processing Time 0.023 seconds

The Control Mechanism of Gonadotropin-Releasing Hormone and Dopamine on Gonadotropin Release from Cultured Pituitary Cells of Rainbow Trout Oncorhynchus mykiss at Different Reproductive Stages

  • Kim, Dae-Jung;Suzuki, Yuzuru;Aida, Katsumi
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.379-388
    • /
    • 2011
  • The mechanism by which gonadotropin-releasing hormone (GnRH) and dopamine (DA) control gonadotropin (GTH) release was studied in male and female rainbow trout using cultured pituitary cells obtained at different reproductive stages. The mechanisms of follicle-stimulating hormone (FSH) release by GnRH and DA could not be determined yet. However, basal and salmon-type GnRH (sGnRH)- or chicken-II-type GnRH (cGnRH-II)- induced luteinizing hormone (LH) release increased with gonadal maturation in both sexes. LH release activity was higher after sGnRH stimulation than cGnRH-II stimulation at maturing stages in both sexes. The GnRH antagonist ([Ac-3, 4-dehydro-$Pro^1$, D-p-F-$Phe^2$, D-$Trp^{3,6}$] GnRH) suppressed LH release by sGnRH stimulation in a dose-dependent manner, although the effect was weak in maturing fish. The role of DA as a GTH-release inhibitory factor differs during the reproductive cycle: the inhibition of sGnRH-stimulated LH release by DA was stronger in immature fish than in maturing, ovulating, or spermiated fish. DA did not completely inhibit sGnRH-stimulated LH release, and DA alone did not alter basal LH release. Relatively high doses ($10^{-6}$ or $10^{-5}M$) of domperidone (DOM, a DA D2 antagonist) increased LH release, which did not change with reproductive stage in either sex. The potency of DOM to enhance sGnRH-stimulated LH release was higher in maturing and ovulated fish than in immature fish. These data suggest that LH release from the pituitary gland is controlled by dual neuroendocrine mechanisms by GnRH and DA in rainbow trout, as has been reported in other teleosts. The mechanism of control of FSH release, however, remains unknown.

Effects of Gonadotropin Releasing Hormone on Steroidogenesis and Apoptosis of Human Granulosa-Lutein Cells (생식샘자극호르몬분비호르몬이 사람 과립-황체화 세포의 스테로이드 생성과 세포자연사에 미치는 영향)

  • Lee, Hyo-Jin;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • GnRH and its receptor are known to express locally in the ovary and to regulate the ovarian function by affecting on granulosa and lutein cells. It has been reported that GnRH directly causes apoptosis in the granulosa and lutein cells of the ovary. However, whether the apoptosis of the cells by GnRH is recovered by FSH as an anti-apoptotic factor is not yet known. In this study, we evaluated the apoptosis and the production of progesterone $(P_4)$ and estradiol $(E_2)$ after treatment with 5, 50, and 100 ng/$m\ell$ GnRH and 1 IU/ml FSH in the granulosa-lutein cells that are obtained during oocyte-retrieval for IVF-ET. Results of DNA fragment analysis and TUNEL assay demonstrated that DNA fragmentation and the rate of apoptotic cells were increased in a dose-dependent manner showing a significant increase in the cells treated with 100 ng/$m\ell$ GnRH. In addition, we found that FSH suppresses the apoptosis of the cells induced by GnRH. In the results of chemiluminescence assay for $P_4$ and $E_2$, $P_4$ production was decreased by GnRH treatment, whereas $E_2$ production was not changed. We also demonstrated that FSH inhibits the suppressive effect of GnRH on $P_4$ production as the result of apoptosis. The present results suggest that GnRH agonist using in ovarian hyperstimulation protocol might induce the dysfunction of the ovary, but its function could be recovered by FSH. These results also will be expected to use as the basic data to elucidate the physiological role of GnRH and to develop new ovarian hyperstimulation protocols for IVF-ET.

  • PDF

Pituitary and Gonadal Response to GnRH in Prepubertal Buffaloes (Bubalus bubalis)

  • Singh, C.;Madan, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.78-83
    • /
    • 1998
  • The objective of this study was to investigate the responsiveness of hypophysis and gonads to synthetic GnRH among prepubertal buffalo heifers at 12 months of age. Peripheral plasma FSH, LH, estradiol and progesterone level were measured in blood samples collected at 1 hr before and up to 18 days subsequent to the administration of $200{\mu}g$ GnRH (n=6) or saline (n=6) in Murrah buffalo heifers. The pretreatment peripheral plasma FSH, LH, estradiol and progesterone among GnRH treated heifers were $7.35{\pm}0.45ng/ml$, $1.08{\pm}0.3ng/ml$, $22.93{\pm}1.06pg/ml$ and $0.27{\pm}0.04ng/ml$ respectively. A quick elevation (p < 0.01) of FSH and LH within five min of GnRH administration was observed in all geifers. Although the peak FSH $(89.57{\pm}23.43ng/ml)$ and LH $(7.52{\pm}3.08ng/ml)$ reached by 10 min of GnRH administration, yet the animals differed both in terms of their amplitude response of FSH and LH release as well as in terms of time which animals took to exhiit maximum response to GnRH administration. The GnRH administration did not cause alteration in plasma estradiol and progesterone level. The present study suggests that the pituitary of 12 month buffalo heifers has capacity to synthesize and store of gonadotropin and have developed receptors for GnRH for a spike of gonadotropin release.

Comparison of IVF-ET Outcomes between GnRH Antagonist Multiple Dose Protocol and GnRH Agonist Long Protocol in Patients with High Basal FSH Level or Advanced Age (높은 기저 난포 자극 호르몬 수치를 가지는 환자와 고령 환자의 체외수정시술을 위한 과배란 유도에서 GnRH antagonist 다회 투여법과 GnRH agonist 장기요법의 효용성에 대한 연구)

  • Kim, JY;Kim, NK;Yoon, TK;Cha, SH;Kim, YS;Won, HJ;Cho, JH;Cha, SK;Chung, MK;Choi, DH
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.4
    • /
    • pp.315-324
    • /
    • 2005
  • Objectives: To compare the efficacy of GnRH antagonist multiple dose protocol (MDP) with that of GnRH agonist long protocol (LP) in controlled ovarian hyperstimulation for in vitro fertilization in patients with high basal FSH (follicle stimulating hormone) level or old age, a retrospective analysis was done. Methods: Two hundred ninety four infertile women (328 cycles) who were older than 41 years of age or had elevated basal FSH level (> 8.5 mIU/mL) were enrolled in this study. The patients had undergone IVF-ET after controlled ovarian hyperstimulation using GnRH antagonist multiple dose protocol (n=108, 118 cycles) or GnRH agonist long protocol (n=186, 210 cycles). The main outcome measurements were cycle cancellation rate, consumption of gonadotropins, the number of follicles recruited and total oocytes retrieved. The number of fertilized oocytes and transferred embryos, the clinical pregnancy rates, and the implantation rates were also reviewed. And enrolled patients were divided into three groups according to their age and basal FSH levels; Group A - those who were older than 41 years of age, Group B - those with elevated basal FSH level (> 8.5 mIU/mL) and Group C - those who were older than 41 years of age and with elevated basal FSH level (> 8.5 mIU/mL). Poor responders were classified as patients who had less than 4 retrieved oocytes, or those with $E_2$ level <500 pg/mL on the day of hCG injection or those who required more than 45 ampules of exogenous gonadotropin for stimulation. Results: The cancellation rate was lower in the GnRH antagonist group than in GnRH agonist group, but not statistically significant (6.8% vs. 9.5%, p=NS). The amount of used gonadotropins was significantly lower in GnRH antagonist group than in agonist group ($34.8{\pm}11.3$ ampules vs. $44.1{\pm}13.4$ ampules, p<0.001). The number of follicles > 14 mm in diameter was significantly higher in agonist group than in antagonist group ($6.7{\pm}4.6$ vs. $5.0{\pm}3.4$, p<0.01). But, there were no significant differences in clinical pregnancy rate (24.5% in antagonist group vs. 27.4% in agonist group, p=NS) and implantation rate (11.4% in antagonist group vs. 12.0% in agonist group, p=NS) between two groups. Mean number of retrieved oocytes was significantly higher in GnRH agonist LP group than in GnRH antagonist MDP group ($5.4{\pm}3.5$ vs. $6.6{\pm}5.0$, p<0.0001). But, the number of mature and fertilized oocytes, and the number of good quality (grade I and II) and transferred embryos were not different between two groups. In each group A, B, and C, the rate of poor response did not differ according to stimulation protocols. Conclusions: In conclusion, for infertile women expected poor ovarian response such as who are old age or has elevated basal FSH level, a protocol including a controlled ovarian hyperstimulation using GnRH antagonist appears at least as effective as that using a GnRH agonist, and may offer the advantage of reducing gonadotropin consumption and treatment period. However, much work remains to be done in optimizing the GnRH antagonist protocols and individualizing these to different cycle characteristics.

Effect of Gonadotropin Releasing Hormone-Agonist on Apoptosis of Luteal Cells in Pregnant Rat (Gonadotropin Releasing Hormone-Agonist가 임신된 흰쥐 황체세포의 세포자연사에 미치는 영향)

  • 양현원;김종석;박철홍;윤용달
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.131-139
    • /
    • 2002
  • Since GnRH and its receptor genes are expressed in the ovary, it has been suggested that ovarian GnRH might be involved in the regulation of ovarian function and the apoptosis of ovarian cells. However, it was not known well on the expression and function of GnRH and its receptor in the corpus luteum. The present study was undertaken to investigate whether GnRH and its receptor are expressed in luteal cells and GnRH has any effect on the apoptosis of luteal cells. Luteal cells obtained from the pregnant rats were cultured and stained for GnRH and its receptor proteins. Cultured luteal cells showed distinct immunoreactivity against both anti-GnRH and anti-GnRH receptor antibodies. In addition, the presence of GnRH receptor protein in cultured cells was confirmed by Western blot analysis. To investigate the effect of GnRH on the apoptosis of luteal cells, luteal cells were cultured in the presence of 10$^{-6}$ M GnRH-agonist(GnRH-Ag) for 3, 8, and 12h. TUNEL assay showed that the number of cells undergoing apoptosis increased 12h after culture(P<0.05). DNA fragmentation analysis confirmed the results such that the cells treated for 12h showed the greatest increase of fragmentation(p<0.05). Further, Western blot analysis of cytochrome c in the mitochondrial and cytoplasmic fractions of the luteal cells showed that GnRH-Ag treatment increased the content of cytochrome c in cytoplasm. These results demonstrate that the luteal cells express GnRH and its receptor and GnRH-Ag treatment induces apoptosis of the luteal cells via mitochondrial release of cytochrome c. The present study suggest that the releasing of cytochrome c from mitochondria might be involved in the luteal cell apoptosis induced by GnRH-Ag.

  • PDF

Hypophyseal and Gonadal Response to GnRH in Buffalo Heifers (Bubalus bubalis)

  • Singh, C.;Madan, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.4
    • /
    • pp.416-421
    • /
    • 1998
  • The objective of this study was to investigate the responsiveness of hypophysis and gonads to synthetic GnRH among noncycling Murrah buffalo heifers at 24 months of age. The plasma FSH, LH, estradiol and progesterone levels were measured in blood samples collected at 1 hour before and upto 18th day subsequent to the administration of GnRH ($(200 {\mu}g)$) or saline (2 ml). The pretreatment levels of plasma FSH, LH estradiol and progesterone among GnRH treated heifers (N = 6) were $11.55{\pm}0.57ng/ml$, $0.68{\pm}0.06ng/ml$, $19.84{\pm}0.82pg/ml$ and $0.45{\pm}0.07ng/ml$ respectively. A quick elevation of FSH (p < 0.01) and LH (p < 0.05) within 5 min of GnRH administration was observed in all the heifers. The peak FSH ($74.97{\pm}18.63ng/ml$) and LH ($3.09{\pm}0.54ng/ml$) level was obtained at 30 min of GnRH administration. The elevated level of plasma estradiol on 5th to 18th day, FSH on 7th to 9th day (n = 3) and the progesterone on 13th to 18th day (n = 2) of GnRH injection was obtained. The study indicates that gonads of buffalo heifers at 24 months of age are responsive of GnRH induced gonadotropin release for folliculogenesis and luteal tissue formation

Alteraation of Gonadotropin-releasing Hormone and Luteinizing Hormone ${\beta}$-Subunit mRNA Levels in Neonatally Estrogenized Female Rats

  • Song, Eun-Sup;Kang, Sang-Soo;Cho, Se-Hyung;Choe, Young S.;Geum, Dong-Ho;Choi, Don-Chan;Kim, Kyung-Jin
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.595-602
    • /
    • 1997
  • Treatment of newborn female rats with gonadal steroids induces permanent sterility in adulthood. We investigated the alteration in expression patterns of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) in neonatally estrogenized sterile rats (ESR). Newborn female rats received daily injections of 17${\beta}$-estradiol (E, 10 ${\mu}$g) from the day of birth (day 1) to postnatal day 5. Controls were subjected to vehicles over the same period. All animals were sacrificed on week 7 after birth. Hypothalamic GnRH mANA levels were markedly higher in all ESR than in controls, while hypothalamic GnRH contents in ESR increased in proportion to the frequency of daily administration of E. However, both pituitary LH6 mRNA and serum LH levels were inversely decreased by the same treatment. The data indicate that neonatal exposure of E equally elevates the expression of GnRH gene, but reduces the secretion of GnRH, accordingly leading to attenuation of LH6 gene expression and circulating LH levels. The temporal effect of E and/or progesterone (P) on GnRH and LH6 mRNA levels was also examined in ESR. Newborn female rats were daily injected with E (10 ${\mu}$g) or vehicle for five successive days from day 1 and ovariectomized at week 5. They were implanted with E (235 ${\mu}$g/ml) two days prior to week 7, injected with P (1 mg) 42 h later, and sacrificed 7 h after P administration. In ovariectomized controls, hypothalamic GnRH mRNA levels were dropped to half by treatment of E and restored by subsequent treatment of P. The negative feedback action of E on GnRH mRNA levels observed in ovariectomized rats was completely blocked by neonatal exposure of E. The change in pituitary LH mRNA levels was similar to that in hypothalamic GnRH mRNA levels. Taken together, the results suggest that neonatal treatment of E alters the synthesis and release of GnRH in adulthood and furthermore blocks the negative feedback regulation of E which occurs normally after ovariectomy.

  • PDF

GnRH Antagonist Versus Agonist Flare-up Protocol in Ovarian Stimulation of Poor Responder Patients (저 반응군의 체외수정시술을 위한 과배란유도에 있어 GnRH Antagonist 요법과 GnRH Agonist Flare Up 요법의 효용성에 관한 연구)

  • Ahn, Young-Sun;Yeun, Myung-Jin;Cho, Yun-Jin;Kim, Min-Ji;Kang, Inn-Soo;Koong, Mi-Kyoung;Kim, Jin-Yeong;Yang, Kwang-Moon;Park, Chan-Woo;Kim, Hye-Ok;Cha, Sun-Hwa;Song, In-Ok
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.2
    • /
    • pp.125-131
    • /
    • 2007
  • Objective: The aim of this study was to compare GnRH antagonist and agonist flare-up treatment in the management of poor responder patients. Methods: One hundred forty-four patients from Jan. 1, 2002 to Aug. 31, 2005 undergoing IVF/ICSI treatment who responded poorly to the previous cycle (No. of oocyte retrieved$\leq$5) and had high early follicular phase follicle stimulating hormone (FSH>12 mIU/ml were selected. Seventy-five patients received agonist flare-up protocol and 71 patients received antagonist protocol. We analyzed the number of oocytes retrieved, number of good embryos (GI, GI-1), total dose of hMG administered, implantation rate, cycle cancellation rate, pregnancy rate, live birth rate. Results: The cancellation rate was high in antagonist protocol (53.5% vs. 30.1%). The number of oocyte retrieved, the number of good embyos were high in agonist flare-up group. There was no statistical difference between GnRH agonist flare up protocol and GnRH antagonist protocol in implantation rate (14.5%, 10.1%), clinical pregnancy rate per transfer (29.4%, 21.2%) and live birth rate per transfer (21.6%, 18.2%). Although the result was not statistically significant, GnRH agonist flare up group showed a nearly doubled pregnancy rate and live birth rate per initial cycle than GnRH antagonist group. Conclusions: The agonist flare-up protocol appears to be slightly more effective than the GnRH antagonist protocol in implantation rate, pregnancy rate, live birth rate but shows statistically no significance. Agonist flare-up protocol improved the ovarian response in poor responders. However, based of the result of the study, we can expect improved ovarian response in poor responders by GnRH agonist flare up protocol.

Effects of human growth hormone on gonadotropin-releasing hormone neurons in mice

  • Bhattarai, Janardhan P.;Kim, Shin-Hye;Han, Seong-Kyu;Park, Mi-Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.9
    • /
    • pp.845-851
    • /
    • 2010
  • Purpose: Recombinant human growth hormone (rhGH) has been widely used to treat short stature. However, there are some concerns that growth hormone treatment may induce skeletal maturation and early onset of puberty. In this study, we investigated whether rhGH can directly affect the neuronal activities of of gonadotropin-releasing hormone (GnRH). Methods: We performed brain slice gramicidin-perforated current clamp recording to examine the direct membrane effects of rhGH on GnRH neurons, and a whole-cell voltage-clamp recording to examine the effects of rhGH on spontaneous postsynaptic events and holding currents in immature (postnatal days 13-21) and adult (postnatal days 42-73) mice. Results: In immature mice, all 5 GnRH neurons recorded in gramicidin-perforated current clamp mode showed no membrane potential changes on application of rhGH (0.4, $1{\mu}g/mL$). In adult GnRH neurons, 7 (78%) of 9 neurons tested showed no response to rhGH ($0.2-1{\mu}g/mL$) and 2 neurons showed slight depolarization. In 9 (90%) of 10 immature neurons tested, rhGH did not induce any membrane holding current changes or spontaneous postsynaptic currents (sPSCs). There was no change in sPSCs and holding current in 4 of 5 adult GnRH neurons. Conclusion: These findings demonstrate that rhGH does not directly affect the GnRH neuronal activities in our experimental model.

Excess of leptin inhibits hypothalamic KiSS-1 expression in pubertal mice

  • Ahn, Sung-Yeon;Yang, Sei-Won;Lee, Hee-Jae;Byun, Jong-Seon;Om, Ji-Yeon;Shin, Choong-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.9
    • /
    • pp.337-343
    • /
    • 2012
  • Purpose: Leptin has been considered a link between metabolic state and reproductive activity. Defective reproductive function can occur in leptin-deficient and leptin-excessive conditions. The aim of this study was to examine the effects of centrally injected leptin on the hypothalamic KiSS-1 system in relation to gonadotropin-releasing hormone (GnRH) action in the initial stage of puberty. Methods: Leptin (1 ${\mu}g$) was injected directly into the ventricle of pubertal female mice. The resultant gene expressions of hypothalamic GnRH and KiSS-1 and pituitary LH, 2 and 4 hours after injection, were compared with those of saline-injected control mice. The changes in the gene expressions after blocking the GnRH action were also analyzed. Results: The basal expression levels of KiSS-1, GnRH, and LH were significantly higher in the pubertal mice than in the prepubertal mice. The 1-${\mu}g$ leptin dose significantly decreased the mRNA expression levels of KiSS-1, GnRH, and LH in the pubertal mice. A GnRH antagonist significantly increased the KiSS-1 and GnRH mRNA expression levels, and the additional leptin injection decreased the gene expression levels compared with those in the control group. Conclusion: The excess leptin might have suppressed the central reproductive axis in the pubertal mice by inhibiting the KiSS-1 expression, and this mechanism is independent of the GnRH-LH-estradiol feedback loop.