• Title/Summary/Keyword: mDNA

Search Result 3,756, Processing Time 0.04 seconds

Transconjugation for Molecular Genetic Study of Streptomyces platensis Producing Transglutaminase (Transglutaminase를 생산하는 Streptomyces platensis의 분자생물학적인 연구를 위한 접합 전달법 확립)

  • Bae, Se-Joung;Jo, Yang-Ho;Choi, Sun-Uk
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.97-102
    • /
    • 2010
  • Streptomyces platensis YK-2, newly isolated from forest soil, produces transglutaminase (TGase), which catalyses an acyl transfer reaction between the primary grade amine and protein or $\gamma$-carboxyamide group of peptide bound glutamine residues. For a molecular genetic study of S. platensis, an effective transformation method was established by using a conjugal transfer of DNA from Escherichia coli to spores of actinomycetes. The highest transconjugation frequency of S. platensis was obtained on an MS medium containing 50 mM $MgCl_2$, using $5{\times}10^7\;E$. coli as a DNA donor and $1{\times}10^8$ spores without heat treatment as a host. We also identified that S. platensis contains a single attB site within an ORF encoding a pirin-homolog, and that its attB site sequence shows high homology to that of S. logisporoflavus. In addition, it was confirmed by phenotypic analyses of exconjugants that the introduction of heterologous DNA into the attB site of the S. platensis chromosome does not affect its morphological differentiation and TGase production.

The Effect of Injin and Injinsaryungsangagambang on Liver Cell Viability, Lever Cell Cycle Progression and DNA Damage-induced Apoptosis (인진(茵蔯)과 인진사령산가감방(茵蔯四岺散加減方)이 간세포활성(肝細胞活性), 세포주기(細胞週期) 및 DNA damage-induced apoptosis에 미치는 영향(影響))

  • Kang, Woo-Sung;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Korean Medicine
    • /
    • v.20 no.1 s.37
    • /
    • pp.91-105
    • /
    • 1999
  • The effects of Yinjin and Yinjinsaryongsangagambang on a DNA damaging agent, etoposide-induced apoptosis, cell viability, cell cycle progression, and mRNA expression of apoptosis-related genes of human hepatocyte cell line HepG2 were investigated using tryphan blue exclusion assay, MTT assay, flow cytometry, immunocytometric analysis of PCNA, and quantitative RT-PCR analysis. MTT assay showed that Yinjin and Yinjinsaryongsangagambang increases cellular viability of HepG2 cells in a dosage-dependent manner. Stimulation of cell cycle progression by Yinjin or Yinjinsaryongsangagambang was detected by flow cytometric analysis of the DNA content and immunocytometric analysis of PCNA expression. A significant reduction of a DNA-damaging agent, etoposide-induced apoptosis were found in both Yinjin and Yinjinsaryongsangagambang-treated cells in dosage-dependent manner. In overall, 3-fold reduction of apoptosis was recognized in $10.0\;{\mu}g/ml$ of Yinjin or Yinjinsaryongsangagambang-treated cells compared to untreated cells. Although the difference is not significant, Yinjinsaryongsangagambang showed slightly higher effect on the inhibition of apoptosis than Yinjin. From flow cytometric analysis of apoptosis, while 39.9% of untreated cells showed etoposide-induced apoptotic cell death, only 19.6% or 17.4% of Yinjin or Yinjinsaryongsangagambang-treated cells were fond at apoptotic sub G1 phase, respectively. Interestingly, strong induction of Gadd45-mRNA was observed from Yinjin or Yinjinsaryongsangagambang-treated cells. However, no changes in expression levels of p53 and Waf1 were detected, demonstrating that induction of Gadd45 mRNA expression by Yinjin or Yinjinsaryongsangagambang occurs by p53-independent mechanism. Marked mRNA inductions of two apoptosis-inhibiting genes, Bcl-2 and Bcl- XL, were found in both Yinjin or Yinjinsaryongsangagambang-treated HepG2 cells while no changes was detected in expression levels of an apoptosis-promoting gene, Bax.

  • PDF

Characterization of Four cDNA Clones Expressed in Late Root Nodules of Canavalia lineata (해녀콩의 후기 뿌리혹에서 발현되는 4개의 cDNA 특성)

  • 안정선
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.381-388
    • /
    • 1995
  • Four cONA clones expressed in late root nodules of Canavalia lineata were isolated by differential screening using total RNA from uninfected roots, Clb1 and uricase II cONAs as competitors and named Cnod1, Cne2, Cne3 and Clb2, respectively. Cnod1, hybridized to 1450 nt mRNA, was highly homologous to cysteine proteinase gene from rice and showed nodule-specific expression, especially in late nodules. Cne2, hybrdized to 900 nt mRNA, was moderately homologous to Expressed Sequence Tag of rice and expressed mainly in root nodules. Its expression was increased at 13 OAI and subsequently remained at the same level. Cne3, hybridized to 1700 nt and 1400 ot mRNAs, was highly homologous to tonoplast membrane intrinsic protein TRG31 gene from pea and was expressed strongly in roots and nodules, but weakly in leaves. Temporal expression pattern of Cne3 was coincided with the life cycle of root nodules. Clb2, hybridized to 800 nt mRNA, was expressed from 8 OAI, amplified at 13 DAI and remained steady thereafter.eafter.

  • PDF

Induction of Leptin cDNA Expression in Esherichia coli Cells (대장균 세포에서 Leptin 유전자의 발현 유도)

  • 김은정;정인철;오상환;조무연
    • Journal of Life Science
    • /
    • v.9 no.3
    • /
    • pp.253-261
    • /
    • 1999
  • Leptin gene, an obesity gene, has been known to involve in the regulation of food intake and body weight. It is also thought to be related to the glucose metabolism, insulin secretion and type II diabetes mellitus. Recently, the production of recombinant leptin protein has been attempted for the application in the treatment of obesity and the correction of hereditary obesity and type II diabetes. In the present study, leptin cDNA was cloned from mouse fat cells by RT-PCR and prokaryotic expression of leptin was attempted in order ot prepare a leptin-specific antigen. Immunization of a rabbit with the leptin-specific antigen into a rabbit resulted in the generation of leptin-specific antiserum that could be useful in the detection of leption expressed in various tissues. The sequence of leptin cDNA prepared in the present study wa identical to the previously reported one. Transformation of E. coli(DH5a) cells with the leptin cDNA-inserted translation vector, pGEX-4T-3-leptin followed by treatment with IPTG (0.1mM) resulted in the expression of a large amount of GST-leptin fusion protein with a molecular weight of 44 KDa as an inclusion body. Denaturation of the insoluble fusion protein by 8M urea, 6M guanidium-HCI or 0.1% 2-mercaptoethanol followed by a slow oxidation could not solubilize the inclusion body. The cell extract was subjected to SDS-PAGE and GST-leptin protein electroeluted from the gel was then injected into a rabbit subcutaneously for the immunization. Anti-GST-leptin rabbit antiserum which had a cross reactivity to the GST-leptin protein was generated. Leptin protein expressed in mouse brain and fat tissues was detected by Western blot immunodetection system using the antiserum generated in the present study.

  • PDF

A phylogenetic analysis of the Korean endemic species Paraphlomis koreana (Lamiaceae) inferred from nuclear and plastid DNA sequences

  • Eun-Kyeong HAN;Jung-Hyun KIM;Jin-Seok KIM;Chang Woo HYUN;Dong Chan SON;Gyu Young CHUNG;Amarsanaa GANTSETSEG;Jung-Hyun LEE;In-Su CHOI
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.2
    • /
    • pp.157-165
    • /
    • 2023
  • Paraphlomis koreana (Lamiaceae) was newly named and added to Korean flora in 2014. Paraphlomis belongs to the tribe Paraphlomideae, along with Ajugoides and Matsumurella. However, a recent study has suggested that P. koreana is morphologically similar to Matsumurella chinensis, making them difficult to distinguish from each other. Therefore, we aimed to examine the phylogenetic placement of P. koreana within the tribe and compare its genetic relationship with M. chinensis. We sequenced an additional complete plastid genome for an individual of P. koreana and generated sequences of nuclear ribosomal (nr) DNA regions of internal and external transcribed spacers (ITS and ETS) for two individuals of P. koreana. Maximum likelihood analyses based on two nrDNA regions (ITS and ETS) and four plastid DNA markers (rpl16 intron, rpl32-trnL, rps16 intron, and trnL-F) covering 13 Paraphlomis species and M. chinensis were conducted. Phylogenetic analyses concordantly supported that P. koreana forms a monophyletic group with M. chinensis. Moreover, our study revealed that P. koreana includes nrDNA sequences of M. chinensis as minor intra-individual variants, suggesting that the genetic divergence between the two taxa is incomplete and may represent intraspecific variation rather than distinct species. In conclusion, our findings suggest that the independent species status of P. koreana within Paraphlomis should be reconsidered.

Interaction of Resveratrol and Genistein with Nucleic Acids

  • Usha, Subbiah;Johnson, Irudayam Maria;Malathi, Raghunathan
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.198-205
    • /
    • 2005
  • Resveratrol (RES) and genistein (GEN) are the dietary natural products known to possess chemopreventive property and also the ability to repair DNA damage induced by mutagens/carcinogens. It is believed that the therapeutic activity of these compounds could be primarily due to their interaction with nucleic acids but detailed reports are not available. We here explore the interaction of these drugs with nucleic acids considering DNA and RNA as a potential therapeutic target. The interaction of RES and GEN has been analysed in buffered solution with DNA [saline sodium citrate (SSC)] and RNA [tris ethylene diammine tetra acetic acid (TE)] using UV-absorption and Fourier transform infrared (FTIR) spectroscopy. The UV analysis revealed lesser binding affinity with nucleic acids at lower concentration of RES (P/D = 5.00 and 10.00), while at higher drug concentration (P/D = 0.75, 1.00 and 2.50) hyperchromic effect with shift in the ${\lambda}_{max}$ is noted for DNA and RNA. A major RES-nucleic acids complexes was observed through base pairs and phosphate backbone groups with K = $35.782\;M^{-1}$ and K = $34.25\;M^{-1}$ for DNA-RES and RNA-RES complexes respectively. At various concentrations of GEN (P/D = 0.25, 0.50, 0.75, 1.00 and 2.50) hyperchromicity with shift in the ${\lambda}_{max}$ from 260 $\rightarrow$ 263 om and 260 $\rightarrow$ 270 nm is observed for DNA-GEN and RNA-GEN complexes respectively. The binding constant (from UV analysis) for GEN-nucleic acids complexes could not be obtained due to GEN absorbance overlap with that of nucleic acids at 260 nm. Nevertheless a detailed analysis with regard to the interaction of these drugs (RES/GEN) with DNA and RNA could feasibly be understood by FTIR spectroscopy. The NH band of free DNA and RNA which appeared at $3550-3100\;cm^{-1}$ and $3650-2700\;cm^{-1}$ shifted to $3450-2950\;cm^{-1}$ and $3550-3000\;cm^{-1}$ in DNA-RES and RNA-RES complexes respectively. Similarly shifts corresponding to $3650-3100\;cm^{-1}$ and $3420-3000\;cm^{-1}$ have been observed in DNA-GEN and RNA-GEN complexes respectively. The observed reduction in NH band of free nucleic acids upon complexation of these drugs is an indication of the involvement of the hydroxyl (OH) and imino (NH) group during the interaction of the drugs and nucleic acids (DNA/RNA) through H-bonded formation. The interaction of RES and GEN with bases appears in the order of G $\geq$ T > C > A and A > C $\geq$ T > G. Further interaction of these natural compounds with DNA and RNA is also supported by changes in the vibrational frequency (shift/intensity) in symmetrical and asymmetrical stretching of aromatic rings of drugs in the complex spectra. No appreciable shift is observed in the DNA and RNA marker bands, indicating that the B-DNA form and A-family conformation of RNA are not altered during their interaction with RES and GEN.

Primer RNA Synthesis by E. coli RNA Polymerase on the SSB-coated 229-nt ssi Signal of Lactococcal Plasmid pGKV21 (Lactococcal plasmid pGKV21의 SSB-coated 229-nt ssi signal 상에서 E. coli RNA polymerase에 의한 시발체 RNA 합성)

  • Jeong, Jin-Yong;Kim, Eun-Sil;Kim, Sam-Woong;Kang, Ho-Young;Bahk, Jeong-Dong
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.305-310
    • /
    • 2009
  • Plasmid pGKV21 contains a 229-nucleotide (nt) single-strand DNA initiation (ssi) signal. Using asymmetric PCR, we prepared a small single-stranded (ss) DNA fragment of the ssi signal and, using the 229-nt ssDNA fragment, determined the requirements of RNA polymerase for priming and DNA-protein interaction. The ssi fragment prepared was able to generate primer RNAs with almost the same efficiency as the $M13{\Delta}lac182/229$ phage DNA. However, the cssi (complementary strand of the ssi signal) fragment could not synthesize primer RNAs. This result suggests that the 229-nt ssi signal functions in a strand specific manner. Gel retardation and DNase I footprinting demonstrated that the synthesized ssi fragment could interact with both E. coli RNA polymerase and SSB protein to synthesize primer RNA. In Escherichia coli [pWVAp], an addition of rifampicin resulted in an accumulation of ssDNA, indicating that the host-encoded RNA polymerase is involved in the conversion of ssDNA to double-stranded plasmid DNA.

Partial Sequencing and Characterization of Porcine DNA Methyltransferase I cDNA

  • Lee, Y.Y.;Kim, M.S.;Park, J.J.;H.Y. Kang;Y.M. Chang;Yoon, J.T.;K.S. Min
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.84-84
    • /
    • 2003
  • DNA methylation is involved in epigenetic processes such as X-chromosome inactivation, imprinting and silencing of transposons. DNA methylation is a highly plastic and critical component of mammalian development The DNA methyltransferases (Dnmts) are responsible for the generation of genomic methylation patterns, which lead to transcriptional silencing. The maintenance DNA methyltransferase enzyme, Dnmt 1, and the de novo methyltransferase, Dnmt3a and Dnmt3b, are indispensable for development because mice homozygous for the targeted disruption of any of these genes are not viable. The occurrence of DNA methylation is not random, and it can result in gene silencing The mechanisms underlying these processes are poorly understood. It is well established that DNA methylation and histone deacetylation operate along a common mechanistic pathway to repress transcription through the action of methyl-binding domain proteins (MBDs), which are components of, or recruit, histone deacetylase (HDAC) complexes to methylated DNA. As a basis for future studies on the role of the DNA-methyl-transferase in porcine development, we have isolated and characterized a partial cDNA coding for the porcine Dnmt1. Total RNA of testis, lung and ovary was isolated with TRlzol according to the manufacture's specifications. 5 ug of total RNA was reverse transcribed with Super Script II in the presence of porcine Dnmt 1 specific primers. Standard PCRs were performed in a total volume of 50 ul with cDNA as template. Two DNA fragmenets in different position were produced about 700bp, 1500bp and were cloned into pCR II-TOPO according to the manufacture's specification. Assembly of all sequences resulted in a cDNA from 158bp of 5'to 4861bp of 3'compare with the known human maintenance methyltransferase. Now, we are cloning the unknown Dnmt 1 region by 5'-RACE method and expression of Dnmt 1 in tissues from adult porcine animals.

  • PDF

cDNA Cloning and Overexpression of an Isoperoxidase Gene from Korean-Radish, Raphanus sativus L.

  • Park, Jong-Hoon;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.137-141
    • /
    • 1996
  • A partial cDNA encoding a Korean radish isoperoxidase was obtained from a cDNA library prepared from 9 day old radish root. In order to obtain Korean radish isoperoxidase cDNA, 5' RACE (rapid amplification cDNA end) PCR was performed and a cDNA (prxK1) encoding a complete structural protein was obtained by RT (reverse transcription)-PCR. Sequence analysis revealed that the length of the cDNA was 945 base pairs, and that of the mRNA transcript was ca. 1.6 kb. The deduced amino acid of the protein were composed of 315 amino acid residues and the protein was 92% homologous to turnip peroxidase, and 46% to 50% homologous to other known peroxidases. The 945 bp cDNA encoding Korean radish isoperoxidase was overexpressed in Escherichia coli up to approximately 9% of total cellular protein. The recombinant fusion protein exhibited 43 kDa on SDS-PAGE analysis and the activity level of the recombinant nonglycosylated protein was two fold higher in IPTG induced cell extracts than that of uninduced ones.

  • PDF

Biochemical Characteristics of the Granulosis Viruses DNA of Common Cabbage Worm, Pieris rapae and Pieris brassicae (배추흰나비 과립병바이러스 DNA의 생화학적 특성)

  • 류강선;진병래;강석권
    • Korean journal of applied entomology
    • /
    • v.30 no.2
    • /
    • pp.138-143
    • /
    • 1991
  • This study was carried out to acquire some basic biochemical informations on the granulosis virus (GV) DNA of Pieris rapae and Pieris brassicae. The thermal denaturation temperature (Tm) and G+C content of the DNA of the viruses were $83.7^{\circ}C$ and 35.5% for P. rapae GV, $84.0^{\circ}C$ and 35.9% for P. brassicae GV, respectively. There were some differences in the DNA fragmentation patterns of the two GV's produced by digestion with restriction endonucleases such as EcoR I , BamH I and Hind m . The homololgy between the two DNAs was caculated to be 97.0%. The size of the genome was estimated to be 103 kbp for P. rapae GV and 108 kbp for P. brassicae GV.

  • PDF