• Title/Summary/Keyword: lytic effect

Search Result 51, Processing Time 0.03 seconds

Photosensitized Lysis of Egg Lecithin Liposomes by L-Tryptophan and N-Acetylphenylalanyl-L-Tryptophan

  • Cho, Dae-Won;Yoon, Min-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.78-81
    • /
    • 1986
  • The photosensitized lysis of egg lecithin lipid membranes (liposomes) have been performed to UV-B light (270-320 nm) by L-tryptophan(L-Trp) and its peptide such as N-acetylphenylalanyl-L-tryptophan(NAPT) incorporated in the liposomes(ca. 0.1% by weight) or in the external buffer (0.1-0.3 mM). Requirement of oxygenation suggests that the lysis of liposomes is caused by the photosensitized oxidation of lipids. There was significant protection against lysis photosensitized by Trp in the external buffer by low concentration of ferricyanide (0.8 mM), but there was no effect on the lytic efficiency by $N_3^-$ which is singlet oxygen($^1O_2$) quencher, indicative of an electron transfer mechanism involved in the photosensitization. The small change of the lytic efficiency with increasing pH from 4 to 9 was interpreted by large target theory and subsequently indicates that superoxide($O_2^-$) may be an active intermediate for the oxidation. The efficiency of photosensitization of Trp was higher than that of NAPT under the same experimental condition. The weak lytic efficiency of liposomes photosensitized by NAPT was enhanced by incorporating NAPT in liposomes, but it was again quenched by ${\beta}$-carotene incorporated in the bilayer of liposomes. These results indicate that a portion of liposome lysis may be due to $^1O_2$ formation from the excited NAPT.

A Study on the Lysis of a Bluegreen Alga Anabaena cylindrica by a Bacterium (세균에 의한 남조 Anabaena cylindrica의 분해에 대한 연구)

  • Kim, Cheol-Ho;Gwon, O-Seop;Lee, Jin-Ae
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.355-360
    • /
    • 2003
  • A Gram (-), rod-shaped bacterium in size of 1.6-2.8 $\times$ 0.4 μm was isolated from a eutrophic reservoir, which exhibited growth-inhibiting effect against a bluegreen alga (Anabaena cylindrica). This isolate showed positive reactions for catalase and oxidase, and optimal conditions of 35-40°C and pH 9.0. This isolate was designated AC-1 in this manuscript. In a mixed-culture of A. cylindrica and AC-1, their growth patterns were inversely correlated and the bluegreen algal vegetative cells completely disappeared within 24-36 hours. AC-1 showed similar lytic activity in natural water as in an artificial medium. The lytic activity of AC-1 was dependent on the photosynthetic activity of A. cylindrica. When observed under phase contrast microscope, the isolate lysed vegetative cells of A. cylindrica in scattered state in a liquid medium, whereas heterocysts have not been lysed.

Studies on the Enzyme from Arthrobacter luteus Accelerating the Lysis of Yeast Cell Walls - I. Effects of Various Factors on the Lysis of Yeast Cell Walls by the Preparation of Crude Zymolyase (Arthrobacter luteus가 생산(生産)하는 효모(酵母) 세포벽(細胞壁) 용해(溶解) 촉진(促進) 효소(酵素)에 관(關)한 연구(硏究) - 제(第) 1 보(報) : Zymolyase 조(粗) 효소(酵素)에 의한 효모(酵母) 세포벽(細胞壁) 용해(溶解)에 미치는 제(諸) 인자(因子)의 영향(影響) -)

  • Oh, Hong-Rock;Shimoda, Tadahisa;Funatsu, Masaru
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.242-248
    • /
    • 1979
  • To detect proper lytic assay conditions of the crude zumolyase from Arthrobacter luteus, effets of the various factors involved in the lytic system of Sacchromyces sake cultured with shaking in the malt extracts medium were investigated. The results are summarized as follows : 1. The susceptibilities of viable cells of S. sake from logarithmic growth phase to the lytic enzmye were much greater than those of the cells in lag and stationary phases. The cells cultured for 18 hr were the most susceptible to the enzyme. 2. Lytic activity of the enzyme toward the viable cells of S. sake was very low. It was, however, enhanced 4 folds of more by the pretreatment of the cells with 0.05 M sodium sulfite. 3. Lytic activity of the enzyme toward commercial baker's yeast cells was negligible, and the effect of sodium sulfite on the lysis of the cells also was nothing but a little. 4. The lyophilized cells of the baker's yeast showed more susceptibility to the lytic enzyme than viable cells of the yeast. No definite effect of sodium sulfite on the lysis of the lyophilized cells, however, was observed either baker's yeast of S. sake. 5. It appeared that the relationship between the reaction rate and the enzyme concentration on the lysis of the yeast cell walls followed enzyme kinetic theory, but one between the reaction rate and concentration of the yeast cells as substrates showed different pattern from that in enzyme kinetic theory. 6. After the preparation of crude zymolyase was kept at $7^[\circ}C$ for 10 days in the 0.05 M phosphate buffer, pH 7.5, the remainning lytic activity was about 80 %.

  • PDF

Isolation and Characterization of Alga-Lytic Bacterium HY0210-AK1 and Its Degradability of Anabaena cylindrica (남조류 분해세균 HY0210-AK1의 분리와 특성 및 Anabaena cylindrica 분해 활성)

  • 장은희;김정동;한명수
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • To isolate alga-lytic bacteria, a number of samples were collected from Lake of Sukchon and Pal'tang reservoir where cyanobacteria blooming occurred. HY0210-AK1, which exhibited high alga-lytic activity, was isolated using Anabaena cylindrica lawn. The morphological and biochemical characteristics of the isolate HY0210-AK1 were very similar to that of the genus Rhizobium. Taxonomic identification including 16S rDNA base sequencing and phylogenetic analysis indicated that the isolate Hy0210-AK1 had a 99.1% homology in its 16S rDNA babe sequence with Sphingobium herbicidovorans. A. cylindrica NIES-19 was susceptible to the alga-lytic bacterial attack. The growth-inhibiting offset of the bacterium was not different on A. cylindrica NIES-19 when Sphingobium herbicidovorans HY0210-AK1 was in the lag, exponential, and stationary growth phase, although the alga-Iytic effect of S. herbici-dovorans HY0210-AK1 that in stationary growth phase was somewhat pronounced at the first time of inoculation. When S. herbicidovorans HY0210-AK1 was inoculated was inoculated with $1\times 10^{8}$ CFU $ml^{-1}$ together with A cylindrica NIES-19, the bacterium proliferated and caused algal lysis. A. cylindrica NIES-19 died when S. herbicidovorans HY0210 AKl was added to the algal culture but not when duly the filtrates from the bacterial culture was added. This suggests that extracellular substances are not responsible for inhibition of A. cylindrica NIES-19 and that algal Iysis largely attributed to direct interaction between S. herbicidovorans HY0210-AK1 and A. cylindrica NIES-19. The alga-lytic bacterium HY0210-AK1 caused cell lysis and death of three strain of Micro-cystis aeruginosa, but revealed no alga-Iytic effects on the Stephanodiscus hantzschii.

Temperature Effect on the Productivity of Recombinant Protein in a Lysis and DNA packaging-deficient and Temperature-sensitive Bacteriophage $\lambda$System (용균과 DNA 패키징 유전자가 결핍된 온도 민감성 박테리오 파아지 람다 시스템에서 재조합 단백질 생산성에 미치는 온도의 영향)

  • Oh, Jeong-Seok;Park, Tai-Hyun
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.112-115
    • /
    • 2005
  • E. coli in combination with bacteriophage $\lambda$ was used to overcome the intrinsic plasmid instability that is frequently found in recombinant fermentation especially in long-term operation. In order to enhance the stability and productivity, the bacteriophage ${\lambda}NM1070$ was used in this study. It is a $\lambda$ mutant, which is deficient in the synthesis of protein related to DNA packaging and cell lysis. The ${\lambda}NM1070$ is also a temperature-sensitive mutant. To optimize the production of recombinant protein in this temperature-sensitive system, the temperature effects on growth and cloned gene expression were investigated for stable and efficient recombinant gene expression. The induction to the lytic state was not complete at $36^{\circ}C$ while the temperature above $40^{\circ}C$ induced the lytic state completely. However, the productivity was decreased at $42^{\circ}C$ by temperature inhibition. The L-free cell concentration increased with the increase of temperature until $40^{\circ}C$. In conclusion, ${\lambda}NM1070$ has the optimal temperature at $38^{\circ}C$ for stability and at $40^{\circ}C$ for expression.

Effect of Phosphates on Lytic Activity of Bacteriophages Infected in Lactobacilus Cells (유산간균 Bacteriophage의 증식억제물질)

  • 강국희;박기문
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.4
    • /
    • pp.253-258
    • /
    • 1982
  • Lactobacillus casei YIT 9018 was infected with phage J1 and subjected to grow in $Ca^{++}$ -free MRT (spell out) medium under the presence of four different types of phosphates, sodium-metaphosphate,-pyrophos-phate,-dibasic phosphate, and potassium-phosphate. Among the phosphates tested, sodium pyrophosphate showed sufficient inhibition on the lytic activity of the phage at 0.1% level whereas other phosphate needed more than 0.2% for the same effect. When the concentration of sodium pyrophosphate increased to 0.17%, the bacteria could be protected from lysis until the second succeeding transfer.

  • PDF

Improvement of protein extraction efficiency from defatted sesame meal with thermal and enzymatic treatments (열 처리와 효소 처리에 의한 탈지 참깨박 단백질의 추출율 향상)

  • In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.291-295
    • /
    • 2020
  • In order to increase the utilization of defatted sesame meal (DSM), a by-product of sesame oil production, the conditions of extraction of insoluble proteins from DSM by enzyme treatment were investigated. As a result of comparing the treatment results of proteolytic enzymes Alcalase, Flavorzyme, Neutrase, and Protamex with control, Protamex was effective in increasing the total solid and protein content. At the reaction conditions of Protamex (50 ℃, pH 6.0), the dosage of enzymes was appropriate for 1% of DSM and 3 h of enzyme reaction time. To improve the efficiency of enzymatic treatment, the protein content extracted increased as the heat treatment temperature increased, and slightly increased above 110 ℃. As a result of investigating the effect of the combination treatment of cell lytic enzyme (Tunicase) and protease (Protamex) on protein solubilization, it was most effective to treat the cell lytic enzyme after processing the protease. After heat treatment (110 ℃, 10 min), sequential treatment of Protamex and Tunicase increased the protein content by about 3.5 times (9.85→35.58 mg/mL) of the non-heated control and 2.2 times (15.83→35.58 mg/mL) of the heat treated control.

Biocontrol of Anthracnose in Pepper Using Chitinase, ${\beta}$-1,3 Glucanase, and 2-Furancarboxaldehyde Produced by Streptomyces cavourensis SY224

  • Lee, So Youn;Tindwa, Hamisi;Lee, Yong Seong;Naing, Kyaw Wai;Hong, Seong Hyun;Nam, Yi;Kim, Kil Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1359-1366
    • /
    • 2012
  • A strain of Streptomyces cavourensis subsp. cavourensis (coded as SY224) antagonistic to Colletotrichum gloeosporioides infecting pepper plants was isolated. SY224 produced lytic enzymes such as chitinase, ${\beta}$-1,3-glucanase, lipase, and protease in respective assays. To examine for antifungal activity, the treatments amended with the nonsterilized supernatant resulted in the highest growth inhibition rate of about 92.9% and 87.4% at concentrations of 30% and 10%, respectively. However, the sterilized treatments (autoclaved or chloroform treated) gave a lowered but significant inhibitory effect of about 63.4% and 62.6% for the 10% supernatant concentration, and 75.2% and 74.8% for the of 30% supernatant concentration in the PDA agar medium, respectively, indicative of the role of a non-protein, heat stable compound on the overall effect. This antifungal compound, which inhibited spore germination and altered hyphal morphology, was extracted by EtOAc and purified by ODS, silica gel, Sephadex LH-20 column, and HPLC, where an active fraction was confirmed to be 2-furancarboxaldehyde by GS-CI MS techniques. These results suggested that SY224 had a high potential in the biocontrol of anthracnose in pepper, mainly due to a combined effect of lytic enzymes and a non-protein, heat-stable antifungal compound, 2-furancarboxaldehyde.