• Title/Summary/Keyword: lysosomal function

Search Result 46, Processing Time 0.028 seconds

Effects of Atropine, Phentolamine and Propranolol on Calcium uptake, Superoxide generation and Phagocytic activity in activated PMN Leukocytes (Atropine, Phentolamine과 Propranolol이 활성화된 다형핵 백혈구에서의 칼슘 흡수, $O_2-$ 생성 및 식작용에 미치는 효과)

  • Lee, Chung-Soo;Han, Eun-Sook;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.83-92
    • /
    • 1988
  • Although the release of lysosomal enzymes from activated PMN leukocyte can be regulated by intracellular cyclic nucleotide levels, other responses of PMN leukocyte according to the binding of neurotransmitters to either ${\beta}$-adrenergic or muscarinic receptors are still not clarified. In addition, the function of PMN leukocyte mediated by ${\alpha}$-adrenergic receptors is uncertain. Atropine, phentolamine and propranolol inhibited calcium uptake, superoxide generation, NADPH oxidase activity and phagocytic activity in activated PMN leukocyte, whereas carbachol and isoproterenol slightly further stimulated the responses of activated cells. Either carbachol or isoproterenol stimulated superoxide generation was inhibited by their antagonists, atropine and propranolol, respectively. The response of activated PMN leukocyte was inhibited by chlorpromazine, verapamil and dantrolene but slightly stimulated by lithium. On the other hand, chlorpromazine and dibucaine did not affect NADPH oxidase activity. Atropine, phentolamine and propranolol suppressed the calcium dependent phagocytic activity. Thus, the results suggest that atropine, phentolamine and propranolol may inhibit superoxide generation in activated PMN leukocyte by the inhibition of calcium influx and by their direct action on the NADPH oxidase system which is associated with autonomic receptors.

  • PDF

A Study on the Mechanism of Insulin Sensitivity to Glucose Transport System: Distribution of Subcellular Fractions and Cytochalasin B Binding Proteins (인슐린의 포도당 이동 촉진 기전에 관한 연구 -세포내부 미세구조와 Cytochalasin B 결합단백질의 분포-)

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.331-344
    • /
    • 1990
  • What makes glucose transport function sensitive to insulin in one cell type such as adipocyte, and insensitive in another such as liver cells is unresolved question at this time. Recently it is known that insulin stimulates glucose transport in adipocytes largely by redistributing transporter from the storage pool that is included in a low density microsomal fraction to plasma membrane. Therefore, insulin sensitivity may depend upon the relative distribution of gluscose transporters between the plasma membrane and in an intracellular storage compartment. In hepatocytes, the subcellular distribution of glucose transporter is less well documented. It is thus possible that the apparent insensitivity of the hepatocyte system could be either due to lack of the constitutively maintained, intracellular storage pool of glucose transporter or lack of insulin-mediated transporter translocation mechanism in this cell. In this study, I examined if any intracellular glucose transporter pool exists in hepatocytes and this pool is affected by insulin. The results obtained summarized as followings: 1) Distribution of subcellular fractions of hepatocyte showed that there are $24.9{\pm}1.3%$ of plasma membrane, $36.9{\pm}1.7%$ of nucleus-mitochondria enriched fraction, $23.5{\pm}1.2%$ of lysosomal fraction, $9.6{\pm}1.0%$ of high density microsomal fraction and $4.9{\pm}0.5%$ of low density microsomal fraction. 2) In adipocyte, there were $29.9{\pm}2.6%$ of plasma membrane, $19.4{\pm}1.9%$ of nucleus-mitochondria enriched fraction, $26.7{\pm}1.8%$ of high density microsomal fraction and $23.9{\pm}2.1%$ of low density microsomal fraction. 3) Surface labelling of sodium borohydride revealed that plasma membrane contaminated to lysosomal fraction by $26.8{\pm}2.8%$, high density microsomal fraction by $8.3{\pm}1.3%$ and low density microsomal fraction by $1.7{\pm}0.4%$ respectively. 4) Cytochalasin B bound to all of subcellular fractions with a Kd of $1.0{\times}10^{-6}M$. 5) Photolabelling of cytochalasin B to subcellular fractions occurred on 45 K dalton protein band, a putative glucose transporter and D-glucose inhibited the photolabelling. 6) Insulin didn't affect on the distribution of subcellular fractions and translocation of intracellular glucose transporters of hepatocytes. 7) HEGT reconstituted into hepatocytes was largely associated with plasma membrane and very little was found in low density microsomal fraction which equals to the native glucose transporter distribution. Insulin didn't affect on the distribution of exogeneous glucose transporter in hepatocytes. From the above results it is concluded that insulin insensitivity of hepatocyte may due to lack of intracellular storage pool of glucose transporter and thus intracellular storage pool of glucose transporter is an essential feature of the insulin action.

  • PDF

Mucopolysaccharidoses in Taiwan

  • Lin, Hsiang-Yu;Chuang, Chih-Kuang;Lin, Shuan-Pei
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.4 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Mucopolysaccharidoses (MPSs) are a group of rare inherited metabolic disorders caused by specific lysosomal enzyme deficiencies leading to the sequential degradation of glycosaminoglycans, causing substrate accumulation in various cells and tissues and progressive multiple organ dysfunction. The rare disease medical care team at Mackay Memorial Hospital in Taiwan has been dedicated to the study of MPSs for more than 20 years. Since 1999, more than 50 academic papers focusing on MPSs have been published in international medical journals. Topics of research include the following items regarding MPSs: incidence, natural history, clinical manifestations, gene mutation characteristics, cardiac function, bone mineral density, sleep studies, pulmonary function tests, hearing assessments, percutaneous endoscopic gastrostomy, anesthetic experience, imaging analysis, special biochemical tests, laboratory diagnostics, global expert consensus conferences, prenatal diagnosis, new drug clinical trials, newborn screening, and treatment outcomes. Of these published academic research papers, more than half were cross-domain, cross-industry, and international studies with results in cooperation with experts from European, American and other Asian countries. A cross-specialty collaboration platform was established based on high-risk population screening criteria with the acronym "BECARE" (Bone and joints, Eyes, Cardiac and central nervous system, Abdomen and appearance, Respiratory system, and Ear, nose, and throat involvement). Through this platform, orthopedic surgeons, rheumatologists, ophthalmologists, cardiologists, rehabilitation physicians, gastroenterologists, otorhinolaryngologists, and medical geneticists have been educated with regards to awareness of suspected cases of MPSs patients to allow for a further confirmative diagnosis of MPSs. Because of the progressive nature of the disease, an early diagnosis and early multidisciplinary therapeutic interventions including surgery, rehabilitation programs, symptom-based treatments, hematopoietic stem cell transplantation, and enzyme replacement therapy, are very important.

Expression Analysis of Cathepsin F during Embryogenesis and Early Developmental Stage in Olive Flounder (Paralichthys olivaceus)

  • Lee, Jang-Wook;Lee, Young Mee;Yang, Hyun;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon;Lee, Jeong-Ho
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.221-229
    • /
    • 2013
  • Cathepsins are members of the multigene family of lysosomal cysteine proteinases and have regulated function in several life processes. The potential role of cathepsin F cysteine gene was expected as protease in the yolk processing mechanism during early developmental stage, but expression analysis was unknown after fertilization. The alignment analysis showed that amino acid sequence of cathepsin F from olive flounder liver expressed sequence tag (EST) homologous to cathepsin F of other known cathepsin F sequences with 87-98% identity. In this study, we examined the gene expression analysis of cathepsin F in various tissues at variety age flounder. Tissue distribution of the cathepsin F mRNA has been shown to be ubiquitous and constitutive pattern regardless of age in each group, although derived from cDNA library using liver sample. The mRNA level of cathepsin F more increased as developmental proceed during embryogenesis and early developmental stage, especially increased in the blastula, hatching stage and 3 days post hatching (dph). As a result, it may suggest that the proteolysis of yolk proteins (YPs) has been implicated as a mechanism for nutrient supply during early larval stages in olive flounder.

Clinical, radiologic, and genetic features of Korean patients with Mucopolysaccharidosis IVA

  • Lee, Na Hee;Cho, Sung Yoon;Maeng, Se Hyun;Jeon, Tae Yeon;Sohn, Young Bae;Kim, Su Jin;Park, Hyung-Doo;Jin, Dong Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.11
    • /
    • pp.430-437
    • /
    • 2012
  • Purpose: Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is rare lysosomal storage disorder caused by N-acetylgalactosamine-6-sulfatase (GALNS) deficiency. Only a few MPS IVA cases have been reported in the Korean literature; there is a paucity of research about clinical or radiologic findings for this disorder. Therefore, we studied clinical findings, radiological features, and genetic data of Korean MPS IVA patients for determining factors that may allow early diagnosis and that may thus improve the patients' quality of life. Method: MPS IVA was confirmed via assay for enzymatic activity of leukocytes in 10 patients. The GALNS gene was analyzed. Patients' charts were retrospectively reviewed for obtaining clinical features and evaluated for radiological skeletal surveys, echocardiography, pulmonary function test, and ophthalmologic test results. Result: Nine patients had severe clinical phenotype, and 1 had an intermediate phenotype, on the basis of clinical phenotype criteria. Radiologic findings indicated skeletal abnormalities in all patients, especially in the hips and extremities. Eight patients had an odontoid hypoplasia, and 1 showed mild atlantoaxial subluxation and cord myelopathy. Genetic analysis indicated 10 different GALNS mutations. Two mutations, c.451C>A and c.1000C>T, account for 37.5% (6/16) and 25% (4/16) of all mutations in this samples, respectively. Conclusion: An understanding of the clinical and radiological features involved in MPS IVA may allow early diagnosis of MPS IVA. Adequate evaluations and therapy in the early stages may improve the quality of life of patients suffering from skeletal abnormalities and may reduce life-threatening effects of atlantoaxial subluxation.

Protective Effects of Chongmyunggongjin-dan on H2O2-induced C6 Glial Cell Death (H2O2로 유발된 C6 신경교세포 사멸에 대한 총명공진단의 보호 효과)

  • Hwang, Gyu-sang;Shin, Yong-jeen
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.1
    • /
    • pp.44-58
    • /
    • 2020
  • Objectives: This study was conducted to identify the protective effects of Chongmyunggongjin-dan (CMGJD) on Hydrogen peroxide (H2O2)-induced apoptosis mechanisms in C6 glial cells. Method: We used CMGJD after distilled water extraction, filtration, and lyophilization. The ROS scavenging effect was examined by fluorescence microscopy. Expression levels of proteins related to ROS generation were investigated by western blotting. Functional changes in organelles related to Reactive oxygen species (ROS) generation were investigated by immunoblotting and by verifying expression level of relevant enzymes. Results: The CMGJD extract protected the cells against H2O2-induced morphological changes and DNA fragmentation, inhibited the increase of Heme_oxygenase-1(HO-1) and the decrease in catalase, protected against the loss of mitochondrial membrane potential, inhibited disturbances of lysosomal function, and induced an increase in peroxisomes. Conclusion: CMGJD was confirmed to have a protective effect on H2O2-induced C6 glial cell death possibly by blocking the pathways causing damage to subcellular organelles, such as mitochondria, lysosomes, and peroxisomes. We assume that CMGJD will be effective for the prevention and treatment of ischemic stroke in a clinical environment.

Long-term Effectiveness of Enzyme Replacement Therapy in Fabry Disease (파브리병에서 효소대치요법의 장기적 효과)

  • Kim, Ja Hye;Cho, Ja Hyang;Choi, Jin-Ho;Lee, Beom Hee;Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.14 no.1
    • /
    • pp.37-41
    • /
    • 2014
  • Fabry disease is an X-linked disease caused by deficiency of the lysosomal enzyme alpha-galactosidase A. Affected males present anhydrosis, acroparesthesia and angiokeratoma, and subsequently cardiac, cerebral and renal complications are followed. Females and atypical variants show heterogeneous clinical symptoms. In 2001, two recombinant enzymes were approved for Fabry disease: agalsidase alpha and agalsidase beta. Since the introduction of enzyme replacement therapy (ERT), the number of long-term follow-up studies has been reported. Long-term ERT showed effectiveness on renal function in patients with chronic kidney disease, decrease or stabilization of left ventricular mass, and improvement of pain and quality of life. However, there were limited effects on cerebrovascular events and their mortality. Current literatures on the clinical effect of ERT have reported limited datain adult patients who have already advanced disease. Therefore, further study for pre-symptomatic patients and atypical variants is needed to verify the impact of ERT. This review summarized recent progresses in ERT and limitations of long-term effect of ERT in patients with Fabry disease.

Antitumor and Immunostimulating Activities of Acanthopanax sessiliflorus Fruits

  • Lee, Sang-Hyun;Lee, Yeon-Sil;Jung, Sang-Hoon;Ji, Jun;Shin, Kuk-Hyun;Kim, Bak-Kwang;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.9 no.2
    • /
    • pp.112-116
    • /
    • 2003
  • The antitumor and immunostimulating activities of Acanthopanax sessiliflorus fruits were investigated. Polysaccharide isolated from this plant, when administered consecutively for 9 days at 50 and 100 mg/kg i.p. in mice, caused a significant increase in the life span and a significant decrease in the tumor weight and volume in mice inoculated with Sarcoma-180 tumor cells. Polysaccharide was also demonstrated to exhibit phagocytosis-enhancing activity as measured by the carbon clearance in mice. Polysaccharide, when administered i.p. at 50 and 100 mg/kg/day for 3 consecutive days, exhibited a significant RCtr/RCc [the rate of regression coefficient of the animals teated (RCtr) to that of the control (RCc)], being 1.44 (PI = 1), 1.52 (PI = 2) which was approximately the same with that of enhancement of phagocytosis, its potency as expressed by the regression coefficient ratio of zymosan (RCtr/RCc = 1.55, PI = 2), a typical phagocytosis enhancer. Polysaccharide also caused a significant increase in the acid phosphatase activity representing lysosomal enzymes in macrophages at 1-100 ig/ml in vitro in compliance with in vivo results. These results suggest that the antitumor activity of polysaccharide might be related to the immunostimulating function.

Tetrachloroauric Acid Depresses the Activation Processes of Phagocytic Cells

  • Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.377-384
    • /
    • 1998
  • Gold compounds depress phagocytic cell responses, including chemotaxis, and respiratory burst. However, the effects of gold compounds on the function of phagocytic cells are variable according to the preparation of medicine. In this study, effect of tetrachloroauric acid on activated neutrophil responses, including respiratory burst, lysosomal enzyme release and change of intracellular $Ca^{2+}$ level and on the synthesis of interleukin-8 and granulocyte-macrophage colony stimulating factor by macrophages was studied. This study further examines how gold compounds affect the activation processes. The respiratory burst stimulated by complement C5a, degraded IgG and PMA in neutrophils was inhibited by tetrachloroauric acid. In contrast to C5a and degraded IgG, PMA-stimulated superoxide production was weakly inhibited by tetrachloroauric acid. Staurosporine, genistein, EGTA and verapamil inhibited superoxide and $H_2O_2$ production caused by C5a and degraded IgG. PMA-stimulated superoxide production was inhibited by staurosporine but was not affected by genistein. Tetrachloroauric acid, genistein, EGTA and verapamil inhibited the release of acid phosphatase and myeloperoxidase, while the effect of staurosporine was not detected. The synthesis of interleukin-8 and granulocyte-macrophage colony stimulating factor by $interleukin-1{\beta}$ in macrophages was inhibited by tetrachloroauric acid. Preincubation with tetrachloroauric acid, genistein, EGTA and verapamil, the elevation of [$Ca^{2+}_i$] evoked by C5a was inhibited. Store-regulated $Ca^{2+}$ entry in thapsigargin-pretreated neutrophils was decreased by the addition of tetrachloroauric acid and genistein. The effect of staurosporine on intracellular $Ca^{2+}$ mobilization was not observed. In conclusion, tetrachloroauric acid may suppress neutrophil responses through its inhibitory action on elevation of intracellular $Ca^{2+}$ level and protein kinase C. It might exhibit an inhibitory effect on the action of protein tyrosine kinase. Tetrachloroauric acid depresses cytokine production by macrophages.

  • PDF

RUNX1 Upregulation Causes Mitochondrial Dysfunction via Regulating the PI3K-Akt Pathway in iPSC from Patients with Down Syndrome

  • Yanna Liu;Yuehua Zhang;Zhaorui Ren;Fanyi Zeng;Jingbin Yan
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.219-230
    • /
    • 2023
  • Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content, and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.