• Title/Summary/Keyword: lysinoalanine

Search Result 6, Processing Time 0.017 seconds

Lysinoalanine in Protein Recovered from Frozen Belanger's Croaker, Johnius grypotus, Using Alkaline Processing (알칼리 처리하여 회수한 냉동깡치 어육 단백질의 Lysinoalanine 함량)

  • Kim, Gun-Bae;Lee, Keun-Woo;Hur, Sung-Ik;Choi, Yeung-Joon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.337-342
    • /
    • 2007
  • The formation of lysinoalanine (LAL) in protein recovered from the belanger's croaker, Johnius grypotus, using a pH shifting process was measured by amino acid analysis. The LAL peak was detected at 49.24 min, between phenylalanine and histidine peaks in the amino acid analyzer. LAL was not detected in the fish muscle or in protein recovered using the alkaline pH shifting process. LAL was not formed in protein recovered after storage for up to 9 hrs at pH 11, but was detected in the soluble protein fraction at pH 11, followed heating at $90\;^{\circ}C$. The myosin heavy chain decreased with storage time at pH 11. The results suggest that the alkaline shifting process for recovering fish muscle protein is safe, and that no LAL forms.

Effects of Heat Treatment on Protein Quality as Lysine Damage (열처리가 Lysine 손상에 의한 단백질의 품질에 미치는 영향)

  • 이경혜
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.816-828
    • /
    • 1995
  • During the industrial preparation and the storage of foods, the side chain of some protein-bound amino acids can react chemically each other or with other molecules present in the food. The following reactions have been described : destruction of amino acids, racemization, protein-protein interactions, reactions of proteins with reducing sugars, oxidizing agents, or polyphenols. Apart from total destruction, the main reacitons are the forming of Maillard reactions products(e.g. fructoselysine) and the crosslinking with other amino acids in the same or in another protein molecule(e.g. lysinoalanine). The most often involved amino acid is lysine because of its free functional ${\varepsilon}-amino$ acid group. Generally derivatives of amino acids or crosslinks in polypeptides influence the bioavailability and the overall digestibility of the protein. This work reviews the technological, analytical, nutritional, and physiological problems related to the formation of fructoselysine and lysinolalnine in human foods, and evaluates the possible health risk for humans. A summary of the available information is of help in considering whether or not the presence of fructoselysine/lysinoalanine in foods represents a danger to man. The reduction in protein quality through these reactions is not a problem for the general population, but it is extremely important in infant foods, since infants are often nourished with a limited number of food product(e.g. formular foods) which are sensitive to the Mailard reaction.

  • PDF

Studies on Heated Protein Quality Using Homoarginine Method

  • Lee, Kyung--Hee;Hel
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.10-15
    • /
    • 1996
  • To determine the quality of heated protein, in vitro method, invluding lysine, lysionalanine, and fructose-lysine as well as homoarginine by guanidination of lysine, was assessed using heated casein with of without glucose. In vivo methods such as PER, digestibility and BV were also tried on homoarginine, lysinoalanine, fructoselysine, and lysine. The nonreactive lysine for huanidination was hardly digestive, while the non heat damaged lysine side chanis in the protein were accessible for guanidination as well as for the digestion. A linear correlation(${\gamma}$=0.80) was obstained between PER and digestibility of the analysed lysine. Digestibility of homoarginine was higher that of true protein. However, in the guanidinated heated casein with glucose, digestibility of homoarginine was significantly reduced. It is suggested that the homoarginine method may mislead to over- or underestimation of the damaged protein quality.

  • PDF

The Variation of Free Amino Acid during the Tomato Processing (토마토 가공(加工) 공정(工程) 중(中)에 있어서의 유리(遊離) 아미노 산(酸)의 변동(變動))

  • Kim, Seung Yeol;Kato, Hiromichi;Okitani, Akihiro;Hayase, Fumitaka
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.2
    • /
    • pp.576-583
    • /
    • 1982
  • The variation of free amino acids during the tomato producing was studied using a tomato variety, Kagome 77. The concentration of free amino acids in fresh and heated pulp, and in puree and paste was analyzed by using automatic amino acid analyzer, Hitachi model KLA-5. 1. A significant difference in decomposition rate of glutamine and asparagine among amide group was recognized. For instance, the glutamine decomposed fast and no glutamine was found in the paste, while 56% of asparagine was found in the paste. 2. The diminishing quantity of glutamic acid among acid group was highest among all free amino acids. The quantity of aspartic acid was next to the glutamine. The percents of glutamic acid and aspartic acid left over were 38% and 24%, respectively. 3. Glycine, alanine, valine, isoleucine and leucine of neutral amino acids tended to be reduced a little during the heating, concentrating process. 4. No apparent variation was found for the lysine and histidine belonging to basic amino acids. while arginine increased a little. 5. Tyrosine, phenylalanine and tryptophane of aromatic group seemed to increase a little during the heating process. But the variations of them during the concentrating process were not recognized. 6. The methionine content, sulfur containing amino acid decreased a little throughout the process. But the decrease of ${\gamma}-amino$ butyric acid of non-protein was not apparently recognized. 7. The amino acid contents of fresh pulp were found as following order: glutamic acid>${\gamma}$-amino butyric acid>glutamine>aspartic acid>asparagine. The amino acid contents of paste were as glutamic acid>${\gamma}$-amino butyric acid>aspartic acid and aspargine. The percent distribution of aromatic and basic amino acids increased, even it was not great. 8. When amino acids were analyzed by Hitachi KLA-5, unknown peak which was never app eared in the fresh pulp before tryptophane was appeared when processed. The peak became greater when heated and concentrated. Later it was known that the peak was not due to lysinoalanine or ornithine.

  • PDF

Degumming of Silk by Calcium hydroxide (Calcium Hydroxide에 의한 Silk의 정련)

  • 정양숙;김정호;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.45 no.1
    • /
    • pp.34-45
    • /
    • 2003
  • Silk was treated with calcium hydroxide for degumming at different treatment times, temperatures and Ca(OH)$_2$ concentration to optimize degumming conditions in this thesis. After degumming, soluble and insoluble sericin were seperated and then the soluble sericin was characterized by measuring the average degree of polymerization (D.P.), lysinoalanine (LAL) content, DSC, and by amino acid analysis. And degummed silk fibroin was characterized by measuring tenacity and SEM. Degumming loss was increased by increasing the treatment time and temperature until about 30 minutes. After then, a slight difference was found along with treatment times at the Ca(OH)$_2$ concentrations of 0.07% and 0.1% solutions. After degumming, insoluble sericin ratio on degumming solution was increased by increasing treatment temperature at Ca(OH)$_2$ 0.04% solution. At the concentration Ca(OH)$_2$ of 0.07%, a soluble ratio was almost 100% regardless of treatment time and temperature. At the beginning of treatment, insoluble ratio was high at Ca(OH)$_2$ 0.1% solution but it was decreased by increasing treatment time. At the Ca(OH)$_2$ concentration of 0.04%, D.P. of soluble sericin was maintained as a constant value of 10 at 100$^{\circ}C$ although treatment time was increased. However, at 80$^{\circ}C$ and 90$^{\circ}C$, it was hard to prepare a soluble sericin having a constant D.P. by increasing treatment time. At the Ca(OH)$_2$ concentration of 0.07%, D.P. was almost 10 irrespective of treatment temperature and time. Soluble sericins with high D.P. of 20∼30 were obtained at 0.1% and 100$^{\circ}C$. LAL was not detected in soluble sericin. As the results of amino acid analysis, it showed that Ca(OH)$_2$ degumming reduced the contents of hydroxy amino acids like Ser., Thr. and Tyr. In DSC analysis of soluble sericin, endothermic peak by thermal deformation and pyrolysis showed at 189$^{\circ}C$ and at 299$^{\circ}C$, respectively. The tenacities of degummed silk were 15∼30% lower than that of raw silk. And it was decreased with increasing treatment time. From the morphological study, the thickness of degummed silk fibroin became thinner by increasing degumming loss. The roughness of a silk fibroin surface was appeared as treatment concentration was increased.