• 제목/요약/키워드: luteal cells

검색결과 63건 처리시간 0.197초

Inducible Nitric Oxide Synthase Expression and Luteal Cell DNA Fragmentation of Porcine Cyclic Corpora Lutea

  • Tao, Yong;Fu, Zhuo;Xia, Guoliang;Lei, Lei;Chen, Xiufen;Yang, Jie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권5호
    • /
    • pp.626-631
    • /
    • 2005
  • Nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) is involved in cell apoptosis, which contributes to luteal regression and luteolysis in some species. In large domestic animals, no direct evidence for the relationship between NO and cell apoptosis in the process of corpus luteum regression is reported. The present study was conducted to investigate the localization of iNOS on porcine corpora lutea (CL) during the oestrus cycle and its relation to cell DNA fragmentation and CL regression. According to morphology, four luteal phases throughout the estrous cycle were defined as CL1, CL2, CL3 and CL4. By isoform-specific antibody against iNOS, the immunochemial staining was determined. Luteal cell DNA fragmentation was determined by flow cytometry. The results showed that no positive staining for iNOS was in CL1 and that iNOS was produced but limited to the periphery of CL2, while in the CL3, the spreading immunochemical staining was found inside the CL. No iNOS positive staining was detected in CL4. Meanwhile, DNA fragmentation increased dramatically when CL developed from CL2 to CL3 (p<0.05). In CL4, higher proportion of luteal cells still had fragmented DNA than that of luteal cells from CL1 or CL2 (p<0.05). These results indicate that iNOS expression is closely related to luteal cell apoptosis and then to luteal regression.

Change of Protein Patterns in Granulosa Cells and Corpus Luteum during the Ovarian Cycle in Cows (소의 난소주기 동안 과립막세포와 황체조직에서 단백질 패턴의 변화)

  • Song, Eun-Ji;Lee, Yong-Seung;Lee, Sang-Hee;Yoo, Han-Jun;Park, Joung-Jun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • 제37권3호
    • /
    • pp.149-154
    • /
    • 2013
  • The aim of this study was to evaluate the changes of protein patterns in granulosa cells and corpus luteum in ovaries during the estrus cycle in cows. The estrus cycle was devided into five steps of follicular, ovulatory, early-luteal, mid-luteal and late-luteal phases. In results, 61 spots of total 85 spots were repeated on follicular phase and 51 spots of total 114 spots were repeated on ovulatory phase. The 40 spots of total 129 spots were repeated on early-luteal phase and 49 spots of total 104 spots were repeated on mid-luteal phase. Also 41 spots of total 60 spots were repeated on late-luteal phase. On the other hands, the 16 spots were indicated difference in follicular phase and ovulation phase had a difference 10 spots. It was showed difference No. 103 spot in ovulation phase, No. 135 spot in early-luteal phase and No. 175 and 176 spots in mid-luteal phase. Also, the 11 spots were expressed specifically in mid-luteal phase and No. 178 and 179 spots were difference of expression in late-luteal phase. We confirmed that there were 7 spots for ovulation, 4 spots for luteinization and 2 spots for luteolysis. Spot No. 89~93 in ovulation phase were transferrin, and spot No.94~98 were HSP60. Spot No. 103 was Dusty PK, spot No. 135 was OGDC-E2, and spot No. 175 and 176 were Rab GDI beta from luteinization. Spot No. 178 and 179 in luteolysis were vimentin. This results suggest that will be help to basic data about infertility.

Cell Surface Interaction with Expression of Fas Ligand Mediates Prolactin-Induced Apoptosis In Rat Luteal Cell Culture (Rat 황체세포 배양에 있어서 Prolactin에 의한 황체퇴행 및 Fas Ligand의 발현)

  • 장규태;박미령;선동수;윤창현
    • Journal of Embryo Transfer
    • /
    • 제13권2호
    • /
    • pp.179-190
    • /
    • 1998
  • Prolactin (PRL) surge in cycling rats at proestrous afternoon has previously been reported as an inducer of apoptotic cell death of luteal cells. This death-inducing action of PRL seeins unusual, because PRL can he categorized as a cell-survival factor, if other known physiological functions of PRL are taken into account. In this study, the apoptotic action of PRL was assessed in cultured cells prepared from rat luteal tissue and underlying molecular /cellular mechanism of PRL-induced luteolysis was analyzed. The latest crop of corpora lutea (CLs) were enucleated from rat ovaries at 18:00 h on the proestrous day before the next ovulation. Donor rats were pretreated with CB154, a dopamine agonist, in order to he exempted from the endogenous PRL surge. The harvested GLs were dispersed and cultured with or without PRL (2$\mu$g /ml) for 24 or 48 h. An addition of PRL to the culture medium changed the parameters indicative of cell death via apoptosis: a decrease in cell viability (MTT) and an increase in chromatin condensation. Most of the DNA breakdown in nuclei induced by PRL occurred in steroidogenic cells which were identified by 3$\beta$-HSD activity staining, and the number of 3$\beta$-HSD-positivecells were significantly decreased. Interestingly, most of the cells with an apoptotic nucleus adhered to one or more intact and seemingly non-steroidogenic cells. Because the expression of Fas has heen shown to be abundant in murine ovary, and Fas is known to have an exact physiological role in occurrence of apoptotic cell death, the membrane form-Fas ligand (rnFasL) was quantified in the cell lysate. An addition of PRL increased expression of mFasL. Moreover, an addition of concanavalin A (ConA), a T-cell specific activator, in place of PRL, enhanced the apoptotic parameters. Cumulatively, the apoptotic PRL action was addressed to cells unknown than steroidogenic lute~ cells. The most prohable candidate for the direct target cells is Tcells in the luteal tissue that can express mFasL in response to PRL.

  • PDF

Histological Changes of Pituitary Gland Associated with Ovarian Follicular Cyst in Korean Native Cattle (난포낭종(卵胞囊腫)에 나환(羅患)된 한우(韓牛) 뇌하수체(腦下垂體)의 조직학적변화(組織學的變化))

  • Kim, Yong-jun;Jo, Choong-Ho
    • Korean Journal of Veterinary Research
    • /
    • 제27권2호
    • /
    • pp.347-359
    • /
    • 1987
  • To investigate the changes of pituitary gland associated with ovarian cyst in Korean native cattle, pituitaries and ovaries were collected from 54 Korean native cattle at abbatoir. Pituitaries were stained with HerIant pituitary stain method and all the tissues were examined under light microscope. The results obtained were summarized as follows; 1. The delta cells and beta cells in the pars distalis were dull blue and violet in colors respeetively. Basophil size in the follicular phase and pregnant groups was larger than those of luteal phase and ovarian dysfunction groups. 2. The numbers of delta cells in the pars distalis of follicular cyst group were larger than those of remaining groups (p<0.01). 3. The distribution of delta cells in the acidophil zone was greater than that in the basophil zone of the follicular cyst and follicular phase groups. 4. The granulations of delta cells were more intensive in follicular cyst, follicular phase and pregnancy groups than in luteal phase and ovarian dysfunction groups (p<0.01). 5. The numbers of beta cells in follicular phase and ovarian dysfunction groups were larger than those in luteal phase and follicular cyst groups respectively (p<0.01). 6. In all groups, the distribution of beta cells was greater in basophilic zone than in acidophilic zone (p<0.01).

  • PDF

Analysis of protein-protein interaction network based on transcriptome profiling of ovine granulosa cells identifies candidate genes in cyclic recruitment of ovarian follicles

  • Talebi, Reza;Ahmadi, Ahmad;Afraz, Fazlollah
    • Journal of Animal Science and Technology
    • /
    • 제60권6호
    • /
    • pp.11.1-11.7
    • /
    • 2018
  • After pubertal, cohort of small antral follicles enters to gonadotrophin-sensitive development, called recruited follicles. This study was aimed to identify candidate genes in follicular cyclic recruitment via analysis of protein-protein interaction (PPI) network. Differentially expressed genes (DEGs) in ovine granulosa cells of small antral follicles between follicular and luteal phases were accumulated among gene/protein symbols of the Ensembl annotation. Following directed graphs, PTPN6 and FYN have the highest indegree and outdegree, respectively. Since, these hubs being up-regulated in ovine granulosa cells of small antral follicles during the follicular phase, it represents an accumulation of blood immune cells in follicular phase in comparison with luteal phase. By contrast, the up-regulated hubs in the luteal phase including CDK1, INSRR and TOP2A which stimulated DNA replication and proliferation of granulosa cells, they known as candidate genes of the cyclic recruitment.

Effects of GnRH Agonist Used for Ovarian Hyperstimulation in Human IVF-ET on the Apoptosis of Preovulatory Follicular Cells (인간 체외수정 및 배아이식에 있어서 과배란 유도 과정에 사용한 GnRH Agonist가 배란 전 난포내 과립 세포의 세포자연사에 미치는 영향)

  • Yang, Hyun-Won;Kwon, Hyuck-Chan;Hwang, Kyung-Joo;Park, Jong-Min;Oh, Kie-Suk;Yoon, Yong-Dal
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제26권1호
    • /
    • pp.55-65
    • /
    • 1999
  • There have been many reports to date regarding the role of GnRH as a local regulatory factor of ovarian function as studies of human and rat ovaries revealed GnRH and its receptor. In recent studies it has been shown that GnRH directly causes apoptosis in the granulosa cells of the rat ovary, and such results leads to the suggestion that the use of GnRH agonist for more stable long term ovarian hyperstimulation in human IVF-ET programs causes granulosa cell apoptosis which may lead to follicular atresia. Therefore this study attempts to determine if granulosa-luteal cell apoptosis occurs in patients during IVF-ET programs in which GnRH agonist is employed for ovarian hyperstimulation. The quality of oocyte-cumulus complexes obtained during ovum pickup procedures were assessed morphologically and then the fertilization rate and developmental rate was determined. Apoptotic cells among the granulosa-luteal cells obtained during the same procedure were observed after staining with Hematoxylin-eosin. The fragmentation degree of DNA extracted from granulosa-luteal cells was determined and comparatively analyzed. There was no difference in the average age of the patients, the number of oocytes retrieved, and fertilization and developmental rates between the FSH/hMG group and GnRH-long group. There was also no difference in the apoptosis rate and pyknosis rate in the granulosa-luteal cells between the two groups. However, when the oocyte-cumulus complexes were morphoogically divided into the healthy group and atretic group without regard for the method of hyperstimulation, the results showed that the number of oocytes obtained averaged $11.09{\pm}8.75\;and\;10.33{\pm}4.53$ per cycle, respectively, showing no significant difference, but the fertilization rate (77.05%, 56.99%, respectively, p<0.01) and developmental rate (65.96%, 41.51%, respectively, p<0.01) was significantly increased in the healthy group when compared to the atretic group. The degree of apoptosis in the granulosa-luteal cells showed that in the healthy group it was 2.25% which was not significantly different from the atretic group (2.77%), but the pyknosis rate in the atretic group (27.81%) was significantly higher compared to the healthy group (11.35%, p<0.01). The quantity of DNA fragmentation in the FSH/hMG group was 32.22%, while in the GnRH-long group it was 34.27%, showing no significant difference. On the other hand the degree of DNA fragmentation was 39.05% and 11.83% in the healthy group and atretic group, respectively, showing significantly higher increase in the atretic group (p<0.01). The above results suggest that death of granulosa-luteal cells according to the state of the oocyte-cumulus complex is more related to pyknosis rather than apoptosis. Also, the GnRH agonist used in ovarian hyperstimulation does not seem to directly affect the apoptosis of retrieved oocytes and granulosa-luteal cells, and which is thought to be due to the suppression of the apoptogenic effect of GnRH agonist as a result of the high doses of FSH administered.

  • PDF

Expression of Ski in the Corpus Luteum in the Rat Ovary

  • Kim, Hyun;Matsuwaki, Takashi;Yamanouchi, Keitaro;Nishihara, Masugi;Yang, Boh-Suk;Ko, Yeoung-Gyu;Kim, Sung-Woo
    • Journal of Embryo Transfer
    • /
    • 제26권4호
    • /
    • pp.229-235
    • /
    • 2011
  • Sloan-Kettering virus gene product of a cellular protooncogene c-Ski is an unique nuclear pro-oncoprotein and belongs to the Ski/Sno proto-oncogene family. Ski plays multiple roles in a variety of cell types, it can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. Ski protein is implicated in proliferation/differentiation in a variety of cells. The alternative fate of granulosa cells other than apoptosis is to differentiate to luteal cells, however, it is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of this study was, by means of immunohistochemical methods, to locate Ski protein in the rat ovaries during ovulation and corpora lutea (CL) formation to predict the possible involvement of Ski in luteinization. In addition, we performed to examine whether the initiation of luteinization with luteinizing hormone (LH) directly regulates expression of Ski in the luteinized granulosa and luteal cells after ovulation by in vivo models. In order to examine the expression pattern of Ski protein along with the progress of luteinization, follicular growth was induced by administration of equine chorionic gonadtropin to immature female rat, and luteinization was induced by human chorionic gonadtropin treatment to mimic luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in preovulatory follicle, Ski protein expression was induced in response to LH surge, and was maintained after the formation of corpus luteum (CL). These results indicate that Ski is profoundly expressed in the luteinized granulosa cells and luteal cells of CL during luteinization, and suggest that Ski may play a role in luteinization of granulosa cells.

Expression of Neurotrophin 4 and Its Receptor Tyrosine Kinase B in Reproductive Tissues during the Follicular and Luteal Phases in Cows

  • Sun, Yongfeng;Li, Chunjin;Sun, Yanling;Chen, Lu;Liu, Zhuo;Ma, Yonghe;Wang, Chunqiang;Zhang, Wei;Zhou, Xu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권3호
    • /
    • pp.336-343
    • /
    • 2011
  • The neurotrophins, required for the survival and differentiation of the nervous system, are known to be important for the development of the reproductive tissues. However, the signals initiating the growth of follicles, gamete development, and transport and the development of zygote in the reproductive system of cows remain ambiguous. The purpose of the present study was to identify the transcripts and proteins of Neurotrophin 4 (NT4) and its receptor tyrosine kinase B (TrkB) in bovine reproductive tissues. The transcripts and immunoreactivity of NT4 and TrkB proteins were detected by reverse transcription polymerase chain reaction and western blot analysis. Using immunohistochemistry, the specific immunoreactivity of NT4 and TrkB were detected in the oocytes of primordial follicles and in the growing primary follicles. The NT4 and TrkB immunoreactivity was predominantly observed in granulosa cells, cumulus granulosa cells, cumulus oocyte complexes, theca cells of mature follicles, as well as in the oviduct epithelial cells, uterine gland cell, and epithelium cells of the uterus during the follicular and luteal phases in cows. Expressions of NT4 and TrkB mRNAs were not significantly different among the ovary, oviduct, and uterus of the follicular phase. For the luteal phase, the expression of NT4 mRNA in the ovary was significantly higher than that in the oviduct and uterus, and the expression of TrkB mRNA in the oviduct was significantly higher than that in the ovary and uterus, as determined by fluorescence quantitative reverse transcription polymerase chain reaction. The expression of NT4 mRNA was significantly higher than that of TrkB mRNA in the ovary and uterus, whereas NT4 mRNA expression was lower than that of TrkB mRNA in the oviduct during the luteal phase. The present study hypothesizes that NT4 participates in the regulation of both gonads and extra-gonadal reproductive tissues in cows.