• Title/Summary/Keyword: lung volume

Search Result 585, Processing Time 0.033 seconds

The Effect of Passive Lung Expansion Technique and Active Respiration Enhancement Technique on Lung Function in Healthy Adults (수동폐확장과 능동호흡강화 기법이 건강한 성인 폐기능에 미치는 영향)

  • Lee, Donggin;Lee, Yeonseop
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.155-161
    • /
    • 2020
  • Purpose : This study was conducted to investigate the effect of positive active pressure technique and active breathing technique on lung function in healthy adults. Methods : In this study, the passive lung expansion technique and active respiration enhancement technique using an air mask bag unit were conducted in 30 normal adults to observe changes in pulmonary function with forced vital capacity (FVC), Forced expiratory volume at one second (FEV1). In order to observe the change in the level of respiratory function, we would like to investigate the peak expiratory flow (PEF) and the forced expiratory flow (FEF 25-75 %). Results : As a result of this study, there was no significant difference in comparison between the passive lung expansion technique and the active breathing enhancement technique (p>.05). The passive lung expansion technique effectively increased the effortful expiratory volume and the median expiratory flow rate of 1 second (p<.05). And the passive lung expansion technique effectively increased the effortless lung capacity and the maximum expiration flow rate (p<.05). Conclusion : The passive lung expansion technique effectively increases the range of motion of the lungs and chest cages, intrathoracic pressure, and elasticity of the lungs, and the active breathing technique increases the muscle functions such as the diaphragm and the biceps muscles. It is expected that it will be able to selectively improve the respiratory function of patients with respiratory diseases or functional limitations as it is found to be effective.

Assessment of 8-isoprostane (8-isoPGF2α) in Urine of Non-Small Cell Lung Cancer (NSCLC) Patients Undergoing Chemotherapy

  • Johns, Nutjaree Pratheepawanit;Johns, Jeffrey Roy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.775-780
    • /
    • 2012
  • 8-isoprostane (8-$isoPGF_{2{\alpha}}$) is a reliable marker and considered a gold standard for lipid peroxidation. There are very few reports of 8-isoprostane levels in cancer patients, and in patients undergoing chemotherapy. Oxidative stress is however expected and has been observed in patients with cancer. This study measured 8-isoprostane levels in urine by ELISA of 25 patients undergoing chemotherapy for advanced non-small cell lung cancer, at cycles 1, 2, and 3 of treatment. It considers the creatinine clearance of the patients, and correction of 8-isoprostane levels by creatinine clearance, and overnight urine volume methods. The average 8-isoprostane levels in urine increased more than 6 to 12 fold on chemotherapy treatment, from $532{\pm}587$ pg/mL at cycle $1,6181{\pm}4334$ at cycle 2, and $5511{\pm}2055$ at cycle 3. Similar results were obtained if 8-isoprostane levels were corrected for overnight urine volume, giving averages of $285{\pm}244{\mu}g$ at cycle $1,4122{\pm}3349$ at cycle 2, and $3266{\pm}1200$ at cycle 3. No significant difference was seen in average total overnight urine volume or number of urinations between chemotherapy cycles except for a large variation in urine volume between cycle 2 and 3. Creatinine levels were significantly different only between cycles 1 and 2 (p=0.016). In conclusion, cisplatin therapy has been shown to induce high levels of lipid peroxidation in lung cancer patients and can be assessed from the 8-isoprostane marker in overnight urine, with or without urine volume correction.

The Clinical Study of Keumsuyukunjeon on the Dyspnea (금수육군전(金水六君煎)이 호흡곤란(呼吸困難)에 미치는 임상적(臨床的) 고찰(考察))

  • Kim, Jong-Soon;Park, Dong-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.232-243
    • /
    • 1999
  • In the Oriental Medicine, the breathing problem is defined as one of the symptoms such as Cheon-Jeung, Hyo-Jeung and chronic respiratory organs disease. Its source is heard to be the functional reduction of descending of Lung and Kidney. The organs for breathing are known as Lung, Spleen and Kidney. In this research, some remarkable results are referred which were detected by measuring the variations of the breathing volume of 20 patients after taking Keumsuyukunjeon. Picrometer is used for the measurement of the volume. The investigation had been performed since from January 1 st to August 31th of 1998. The patients for the experiment were mainly composed of patients who had trouble in breathing due to the pneumonectasis, sthmas, pneumonias. The percent of men is 67% in sex distribution and the ratio of persons over 50's was 85%. After Keumsuyukunjeon was taken to the patients, the enhancement ratio of breathing volume was appeared as 7.7%. The analysis based on an age was that the patients of 40's show the highest volumetric advancement. The ratio of breathing volume was the aged patients whose lung or kidney is weak and it can be used as the prescription for supplement of body and lung. From the relations between the breathing volume before treatment and the enhancement ratio, the increase of the enhancement ratio and the better response to the medicine were shown to the more serious patients. The period of treatment was 27.5 days average. The enhancement ratio of smoker was 23. and that of non-smoker was 50. At the test of relation between the trouble rate in breathing and the enhancement ratio. Grade Ⅲ shows the highest enhancement value 50%. From the experimental results, It is found that Keumsuyukunjeon gives a noticeable benefit for the patients whose main symptom was breathing problem. Long-term treatments for the serious and aged patients will make much more efficient to the reduction of the symptoms.

  • PDF

Determining the Optimal Dose Prescription for the Planning Target Volume with Stereotactic Body Radiotherapy for Non-Small Cell Lung Cancer Patients

  • Liu, Xi-Jun;Lin, Xiu-Tong;Yin, Yong;Chen, Jin-Hu;Xing, Li-Gang;Yu, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2573-2577
    • /
    • 2016
  • Objective: The aim of this study was to determine a method of dose prescription that minimizes normal tissue irradiation outside the planning target volume (PTV) during stereotactic body radiotherapy (SBRT) for patients with non-small cell lung cancer. Methods: Previous research and patients with typical T1 lung tumors with peripheral lesions in the lung were selected for analysis. A PTV and several organs at risk (OARs) were constructed for the dose calculated; six treatment plans employing intensity modulated radiotherapy (IMRT) were produced, in which the dose was prescribed to encompass the PTV, with the prescription isodose level (PIL) set at 50, 60, 70, 80, 90 or 95% of the isocenter dose. Additionally, four OARs around the PTV were constructed to evaluate the dose received in adjacent tissues. Results: The use of higher PILs for SBRT resulted in improved sparing of OARs, with the exception of the volume of lung treated with a lower dose. Conclusions: The use of lower PILs is likely to create significant inhomogeneity of the dose delivered to the target, which may be beneficial for the control of tumors with poor conformity indices.

Comparison of Predicted Postoperative Lung Function in Pneumonectomy Using Computed Tomography and Lung Perfusion Scans

  • Kang, Hee Joon;Lee, Seok Soo
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.487-493
    • /
    • 2021
  • Background: Predicting postoperative lung function after pneumonectomy is essential. We retrospectively compared postoperative lung function to predicted postoperative lung function based on computed tomography (CT) volumetry and perfusion scintigraphy in patients who underwent pneumonectomy. Methods: Predicted postoperative lung function was calculated based on perfusion scintigraphy and CT volumetry. The predicted function was compared to the postoperative lung function in terms of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1), using 4 parameters: FVC, FVC%, FEV1, and FEV1%. Results: The correlations between postoperative function and predicted function based on CT volumetry were r=0.632 (p=0.003) for FVC% and r=0.728 (p<0.001) for FEV1%. The correlations between postoperative function and predicted postoperative function based on perfusion scintigraphy were r=0.654 (p=0.002) for FVC% and r=0.758 (p<0.001) for FEV1%. The preoperative Eastern Cooperative Oncology Group (ECOG) scores were significantly higher in the group in which the gap between postoperative FEV1 and predicted postoperative FEV1 analyzed by CT was smaller than the gap analyzed by perfusion scintigraphy (1.2±0.62 vs. 0.4±0.52, p=0.006). Conclusion: This study affirms that CT volumetry can replace perfusion scintigraphy for preoperative evaluation of patients needing pneumonectomy. In particular, it was found to be a better predictor of postoperative lung function for poor-performance patients (i.e., those with high ECOG scores).

Change of Lung Volumes in Chronic Obstructive Pulmonary Disease Patients with Improvement of Airflow Limitation after Treatment (치료 후 기류제한이 호전된 만성폐쇄성폐질환 환자에서 폐용적의 변화)

  • Park, Hun Pyo;Park, Soon Hyo;Lee, Sang Won;Seo, Yong Woo;Lee, Jeong Eun;Seo, Chang Kyun;Kwak, Jin Ho;Jeon, Young June;Lee, Mi Young;Chung, In Sung;Kim, Kyung Chan;Choi, Won-Il
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.2
    • /
    • pp.143-147
    • /
    • 2004
  • Background : It is important to predict the exercise capacity and dyspnea, as measurements of lung volume, in patients with COPD. However, lung volume changes in response to an improvement in airflow limitation have not been explored in detail. In the present study, it is hypothesized that lung volume responses might not be accurately predicted by flow responses in patients with moderate to severe airflow limitations. Methods : To evaluate lung volume responses, baseline and follow up, flow and lung volumes were measured in moderate to severe COPD patients. The flow response was defined by an improvement in the $FEV_1$ of more than 12.3%; lung volume changes were analyzed in 17 patients for the flow response. Results : The mean age of the subjects was 66 years; 76% were men. The mean baseline $FEV_1$, $FEV_1$/FVC and RV were 0.98L (44.2% predicted), 47.5% and 4.65 L (241.5%), respectively. The mean follow up duration was 80 days. The mean differences in the $FEV_1$, FVC, TLC and RV were 0.27 L, 0.39 L, -0.69 L and -1.04 L, respectively, during the follow up periods. There was no correlation between the delta $FEV_1$ and delta RV values(r=0.072, p=0.738). Conclusion : To appropriately evaluate the lung function in patients with moderate to severe airflow limitations; serial lung volume measurements would be helpful.

Zigbee Based Wireless Respiration Monitor System (지그비 통신 기반의 근거리 무선 호흡모니터 시스템)

  • Lee, In-Kwang;Kim, Seong-Sik;Jang, Jong-Chan;Kim, Koon-Jin;Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.142-147
    • /
    • 2008
  • Abdominal circumference changes due to breathing by the respiratory muscle activity such as diaphragm, which would partially represent the lung volume variation. The present study introduced conductive rubber molded in a cord shape incorporated with a patient's pants. The conductive rubber cord operated as a displacement transducer to measure the lung or abdominal volume changes. Signal extraction circuitry was developed to obtain the volume and its derivative(or the flow) signals followed by wireless transmission based on the Zigbee communication protocol in a size of $65mm{\times}105mm$ easily put in pocket. Breathing frequency was accurately evaluated and breath pattern analysis seemed feasible, since respiratory behaviours such as maximal inspiration and cough were well identified. Remote wireless receiver module also enabled to monitor both volume and flow signals during resting breathing on a PC terminal.

Differentiation of tidal volume & mean airway pressure with different Bag-Valve-Mask compression depth and compression rate (Bag-Valve-Mask의 사용방법에 따른 일회호흡량과 평균기도압의 변화 연구)

  • Jo, Seung-Mook;Jung, Hyung-Keon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.16 no.2
    • /
    • pp.67-74
    • /
    • 2012
  • Purpose : The purpose of this study is to get basal user guidelines of safer bag-valve-mask application on patient with normal pulmonary patho-physiologic condition. Methods : This study was accomplished by pre-qualified 25 EMS junior grade students. Participants were instructed randomly compress bag to one-third, half and total and also with differesnt compression speed. Resultant tidal volumes and mean airway pressures obtained in RespiTrainer were analysed in relation to the each compression depth and rate. Results : Demographic difference does not affect tidal volume with any compression depth and rate change. Increasing compression depth is correlated with tidal volume increasement at any compression rate and also with mean airway pressure. If the compression depth is same, compression rate change did not affect significantly the resultant tidal volume or mean airway pressure. Conclusion : Hand size, Experience, BMI dose not affect tidal volume. Compress the 1600 ml bag half to total amount is safe way to offer sufficient tidal volume without risky high airway pressure delivery to patient airway who with normal lung patho-physiologic condition.

A Study on Lung Cancer Segmentation Algorithm using Weighted Integration Loss on Volumetric Chest CT Image (흉부 볼륨 CT영상에서 Weighted Integration Loss을 이용한 폐암 분할 알고리즘 연구)

  • Jeong, Jin Gyo;Kim, Young Jae;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.625-632
    • /
    • 2020
  • In the diagnosis of lung cancer, the tumor size is measured by the longest diameter of the tumor in the entire slice of the CT. In order to accurately estimate the size of the tumor, it is better to measure the volume, but there are some limitations in calculating the volume in the clinic. In this study, we propose an algorithm to segment lung cancer by applying a custom loss function that combines focal loss and dice loss to a U-Net model that shows high performance in segmentation problems in chest CT images. The combination of values of the various parameters in custom loss function was compared to the results of the model learned. The purposed loss function showed F1 score of 88.77%, precision of 87.31%, recall of 90.30% and average precision of 0.827 at α=0.25, γ=4, β=0.7. The performance of the proposed custom loss function showed good performance in lung cancer segmentation.

Dosimetric comparison of IMRT versus 3DCRT for post-mastectomy chest wall irradiation

  • Rastogi, Kartick;Sharma, Shantanu;Gupta, Shivani;Agarwal, Nikesh;Bhaskar, Sandeep;Jain, Sandeep
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • Purpose: To compare the dose distribution of three-dimensional conformal radiation therapy (3DCRT) with intensity-modulated radiation therapy (IMRT) for post-mastectomy radiotherapy (PMRT) to left chest wall. Materials and Methods: One hundred and seven patients were randomised for PMRT in 3DCRT group (n = 64) and IMRT group (n = 43). All patients received 50 Gy in 25 fractions. Planning target volume (PTV) parameters-$D_{near-max}$ ($D_2$), $D_{near-min}$ ($D_{98}$), $D_{mean}$, $V_{95}$, and $V_{107}$-homogeneity index (HI), and conformity index (CI) were compared. The mean doses of lung and heart, percentage volume of ipsilateral lung receiving 5 Gy ($V_5$), 20 Gy ($V_{20}$), and 55 Gy ($V_{55}$) and that of heart receiving 5 Gy ($V_5$), 25 Gy ($V_{25}$), and 45 Gy ($V_{45}$) were extracted from dose-volume histograms and compared. Results: PTV parameters were comparable between the two groups. CI was significantly improved with IMRT (1.127 vs. 1.254, p < 0.001) but HI was similar (0.094 vs. 0.096, p = 0.83) compared to 3DCRT. IMRT in comparison to 3DCRT significantly reduced the high-dose volumes of lung ($V_{20}$, 22.09% vs. 30.16%; $V_{55}$, 5.16% vs. 10.27%; p < 0.001) and heart ($V_{25}$, 4.59% vs. 9.19%; $V_{45}$, 1.85% vs. 7.09%; p < 0.001); mean dose of lung and heart (11.39 vs. 14.22 Gy and 4.57 vs. 8.96 Gy, respectively; p < 0.001) but not the low-dose volume ($V_5$ lung, 61.48% vs. 51.05%; $V_5$ heart, 31.02% vs. 23.27%; p < 0.001). Conclusions: For left sided breast cancer, IMRT significantly improves the conformity of plan and reduce the mean dose and high-dose volumes of ipsilateral lung and heart compared to 3DCRT, but 3DCRT is superior in terms of low-dose volume.