• Title/Summary/Keyword: lung type II cells

Search Result 51, Processing Time 0.023 seconds

Immunomodulating Activity of Fungal ${\beta}-Glucan$ through Dectin-1 and Toll-like Receptor on Murine Macrophage

  • Kim, Ha-Won
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.103-115
    • /
    • 2006
  • [ ${\beta}-Glucan$ ] is a glucose polymer that has linkage of ${\beta}-(1,3)$, -(1,4) and -(1,6). As exclusively found in fungal and bacterial cell wall, not in animal, ${\beta}-glucans$ are recognized by innate immune system. Dendritic cells (DC) or macrophages possesses pattern recognition molecule (PRM) for binding ${\beta}-glucans$ as pathogen-associated molecular pattern (PAMP). Recently ${\beta}-glucans$ receptor was cloned from DC and named as dectin-l which belongs to type II C-type lectin family. Human dectin-l is consisted of 7 exons and 6 introns. The polypeptide of dectin-l has 247 amino acids and has cytoplasmic, transmembrane, stalk and carbohydrate recognition domains. Dectin-l could recognize variety of beta-l,3 and/or beta-l,6 glucan linkages, but not alpha-glucans. In our macrophage cell line culture system, dectin-l mRNA was detected in RA W264.7 cells by reverse transcription-polymerase chain reaction (RT-PCR). Dectin-l was also detected in the murine organs of spleen, thymus, lung and intestines. Treatment of RA W264.7 cells with ${\beta}-glucans$ of Ganoderma lucidum (GLG) resulted in increased expression of IL-6 and $TNF-{\alpha}$ in the presence of LPS. However, GLG alone did not increase IL-6 nor $TNF-{\alpha}$ These results suggest that receptor dectin-l cooperate with CD14 to activate signal transduction that is very critical in immunoresponse.

  • PDF

Neutrophilic Respiratory Burst Contributes to Acute Lung Leak in Rats Given N-nitroso-N-methylurethane (N-nitroso-N-methylurethane으로 유도된 급성 폐손상에서 호중구에 의한 산화성 스트레스의 역할)

  • Kim, Seong-Eun;Kim, Dug-Young;Na, Bo-Kyung;Lee, Young-Man
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2003
  • As is well known that N-nitroso-N-methylurethane (NNNMU) causes acute lung injury (ALI) in experimental animals. And ALI caused by NNNMU is very similar to ARDS in human being in its pathology and progress. In its context, we investigated the pathogenetic mechanism of ARDS associated with oxidative stress by neutrophils in Sprague-Dawley rat model of NNNMU-induced ALI. NNNMU had increased lung weight/body weight ratio (L/B ratio), lung myeloperoxidase (MPO) activity, protein content and number of neutrophils in bronchoalveolar fluid (BALF) compared with those of control rat (p<0.001, respectively). In contrast, the amount of pulmonary surfactant in BALF was decreased by NNNMU (p<0.001). Morphologically, light microscopic examination denoted pathological findings such as formation of hyaline membrane, infiltration of neutrophils and perivascular cuffing in the lungs of NNNMU-treated rats. In addition, ultrastructural changes such as the necrosis of endothelial cells, swelling and vacuolization of lamellar bodies of alveolar type II cells, and the degeneration of pulmonary surfactant were identified after treatment of NNNMU. Very interestingly, cerium chloride electron microscopic cytochemistry showed that NNNMU had increased the production of cerrous-peroxide granules in the lung, which signified the increased production of hydrogen peroxide in the lung. Collectively, we conclude that NNNMU causes acute lung leak by the mechanism of neutrophilic oxidative stress of the lung.

Effects of Flushing, Preservation and Reperfusion in the Canine Transplanted Lung Tissue (관류, 보존 및 재관류 과정이 이식된 개의 폐조직에 미치는 영향)

  • Lim, Young-Keun;Park, Chang-Kwon;Kwon, Kun-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.4
    • /
    • pp.512-522
    • /
    • 1999
  • Background: Due to the paucity of suitable donor organs for lung allotransplantation, a number of techniques have been developed to improve the lung preservation. Ultrastructural studies of the morphologic changes of the flushing, preservation and reperfusion injury in donor lungs have rarely been reported. Methods: Adult dogs (n=46) were matched as donors and recipients for the single lung transplantation. The donor lungs were preserved after flushing with preservation solution and transplanted after 20-hours of preservation at $10^{\circ}C$. Ultrastructural features of the lung were examined after flushing, preservation and 2 hours after lung transplantation (reperfusion) respectively. Results: Electron microscopy after flushing showed focal alveolar collapse and mild swelling of type I epithelial cells. After preservation both type I epithelial cells and endothelial cells were swollen and destroyed focally. The endothelial cells showed protrusion of tactile-like structures into the lumina, blebs or vacuoles of the cytoplasm After reperfusion the lung tissue showed fibrin material in the alveoli, prominent type I epithelial cell swelling with fragmented cytoplasmic debris and marked endothelial cell swelling with vacuoles or tactile-like projections. The alveolar macrophages showed active phagocytosis. Scanning electron microscopic examination of the pulmonary parenchyma showed focally alveolar collapse and focal consolidation after the preservation and more prominent changes after the reperfusion procedure. The lungs preserved with low potassium dextran glucose solution, with additional prostaglandin $E_1(PGE_1)$ and verapamil(VP) showed relatively well preserved ultrastructures compared with those which were preserved with modified Euro-Collins or University of Wisconsin, and with additional $PGE_1$ and/or VP. Conclusion: The ultrastructural changes associated with flushing were mild in severity, the donor lungs were injured during the preservation, and further damage was occurred during the reperfusion. The reperfusion injury resulted in prominent pulmonary parenchymal alterations with a pattern of acute lung injury.

  • PDF

The Effects of Treatment with Cyclophosphamide and Methylprednisolone on Expression of Endothelin-1 in Unilateral Instillation of Paraquat-induced Pulmonary Fibrosis in Guinea Pigs (Paraquat의 편측 기관지 주입에 의해 유발된 폐섬유화증에서 Cyclophosphamide와 Methylprednisolone의 투여에 따른 Endothelin-1의 발현의 변화)

  • Lee, So-Ra;Jeong, Hye-Cheol;Kim, Kyung-Kyu;Lee, Sang-Youb;Lee, Sin-Hyung;Cho, Jae-Youn;Shim, Jae-Jeong;In, Kwang-Ho;Choi, Jong-Sang;Yoo, Se-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.6
    • /
    • pp.775-785
    • /
    • 1999
  • Background : The herbicide paraquat can cause severe lung injury and fibrosis in experimental animals. In this study we have investigated the changes in lung endothelin-1(Et-1) levels and immunohistochemical localization in relation to treatment with cyclophosphamide and methylprednisolone in paraquat induced pulmonary fibrosis in guinea pigs. Material and methods : 29 male Hartley guinea pigs were divided into 4 groups. Group I was normal control. Paraquat was instilled into the lung of guinea pig of group II, III and IV unilaterally. Group II was treated with cyclophosphamide and methylprednisolone. Group III was treated with methlprednisolone. Group IV was not treated. The degree of fibrosis was evaluated by H-E stains and Masson's trichrome stains and cell activity was assessed by Et-1 immunohistochemical stains. Statistical evaluation was performed using the Kruskawallis oneway analysis. Results : Paraquat induced an increase in numbers of fibroblasts and total amount of lung collagen in Group IV compared to the normal controls. There was no significant difference in total numbers of fibroblasts between any of paraquat instilled groups, but there was significant increase in total amount of collagen in Group IV compared to group II and III (p<0.05). The treatment of cyclophosphamide and methyprednisolone suppressed the growths of both fibroblasts and collagen, but this suppression was stastically significant only in the case of collagen Et-1 immunoreactivities of bronchial epithelium, type II pneumocytes, endothelial cells and fibroblast in group II and III were decreased compared to those in group IV. Conclusion : These results demonstrate that Et-1 is an important contributing factor in the pathogenesis of pulmonary fibrosis. Et-1 is synthesized and released by bronchial epithelium, Type II pneumocyte, endothelial cells, alveolar macrophages and fibroblasts. Especially they are associated with alveolar macrophage and fibroblasts. We conclude that combined therapy of cyclophosphamide and methylprednisolone are more effective in the control of Et-1 expression and collagen deposition.

  • PDF

Pathological Study on the Pulmonary Toxicity of Particulate Matters (Carbon Black, Colloidal Silica, Yellow Sands) in Mice

  • Shimada, Akinori
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2005.05a
    • /
    • pp.51-82
    • /
    • 2005
  • To compare the pulmonary toxicity between ultrafine colloidal silica particles (UFCSs) and fine colloidal silica particles (FCSs), mice were intratracheally instilled with 3 mg of 14-nm UFCSs and 230-nm FCSs and pathologically examined from 30 mill to 24 hr post-exposure. Histopathologically, lungs exposed to both sizes of particles showed bronchiolar degeneration and necrosis, neutrophilic inflammation in alveoli with alveolar type II cell proliferation and particle-laden alveolar macrophage accumulation. UFCSs, however, induced extensive alveolar hemorrhage compared to FCSs from 30 min onwards. UFCSs also caused more severe bronchiolar epithelial cell necrosis and neutrophil influx in alveoli than FCSs at 12 and 24 hr post-exposure. Laminin positive immunolabellings in basement membranes of bronchioles and alveoli of UFCSs treated animals was weaker than those of FCSs treated animals in all observation times. Electron microscopy demonstrated UFCSs and FCSs on bronchiolar and alveolar wall surface as well as in the cytoplasm of alveolar epithelial cells, alveolar macrophages and neutrophils. Type I alveolar epithelial cell erosion with basement membrane damage in UFCSs treated animals was more severe than those in FCSs treated animals. At 12 and 24 hr post-exposure, bronchiolar epithelia cells in UFCSs treated animals showed more intense vacuolation and necrosis compared to FCSs treated animals. These findings suggest that UFCSs has greater ability to induce lung inflammation and tissue damages than FCSs.

  • PDF

RG-II from Panax ginseng C.A. Meyer suppresses asthmatic reaction

  • Jung, In-Duk;Kim, Hye-Young;Park, Jin-Wook;Lee, Chang-Min;Noh, Kyung-Tae;Kang, Hyun-Kyu;Heo, Deok-Rim;Lee, Su-Jung;Son, Kwang-Hee;Park, Hee-Ju;Shin, Sung-Jae;Park, Jong-Hwan;Ryu, Seung-Wook;Park, Yeong-Min
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • In asthma, T helper 2 (TH2)-type cytokines such as interleukin (IL)-4, IL-5, and IL-13 are produced by activated $CD^{4+}$ T cells. Dendritic cells played an important role in determining the fate of naive T cells into either $T_H1$ or $T_H2$ cells. We determined whether RG-II regulates the $T_H1/T_H2$ immune response by using an ovalbumin-induced murine model of asthma. RG-II reduced IL-4 production but increased interferon-gamma production, and inhibited GATA-3 gene expression. RG-II also inhibited asthmatic reactions including an increase in the number of eosinophils in bronchoalveolar lavage fluid, an increase in inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyperresponsiveness. This study provides evidence that RG-II plays a critical role in ameliorating the pathogenic process of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of RG-II in terms of its effects in a murine model of asthma.

The Differentiation and Ultrastructural Characteristics of Type II Pneumocyte in Early Human Fetal Lungs (태아 허파의 초기 발달 중 과립허파꽈리세포의 분화와 미세구조의 특징)

  • Yoo, Dong-Hwa;Kim, Dae-Joong;Kim, Sung-Su;Kim, Kyung-Yong;Lee, Won-Bok
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.291-301
    • /
    • 1999
  • The differentiation and ultrastructural characteristics of type II pneumocyte was investigated using 7 cases of human fetal lungs from 9 to 20 weeks of gestation by transmission electron micropscopy. The result obtained were as follows. 1. From the pattern of epithelium, type II pneumocyte was not discernable, but with the gradual development of gestation, the epithelium of the future pulmonary alveoli was transformed from pseudostratified columnar into simple cuboidal epithelium after 15 weeks of geatation. 2. The multilamellar body very specific to type II pneumocyte was observed at first at 9 weeks of gestation. Besides, another characteristics of the cell were also observed such as cytoplasmic inclusion body, granular inclusionbody,multivesicularinclusionbodyanddensebody. 3. The number and size of multilamellar body increased, but those of other inclision bodies decreased at 19 and 20 weeks of gestation. In summary, type II pneumocytes (or precursor cells) with multilamellar body and another characteristic inclusion bodies were observed in the human fetal lungs from 9 weeks of gestation. And so, it is suggested that the differentiation of type II pneumocyte starts at or before 9 weeks of gestation.

  • PDF

Immunohistochemical Analysis for the Expression of DR5 TRAIL Receptor and p53 in Non-small Cell Lung Cancer (비소세포폐암에서 DR5 TRAIL 수용체와 p53에 관한 면역조직화학적 분석)

  • Lee, Kye-Young;Lee, Jung-Hyun;Kim, Sun-Jong;Yoo, Kwang-Ha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.4
    • /
    • pp.278-284
    • /
    • 2008
  • Background: TRAIL is a promising anticancer agent which induces selective tumor cell death due to a unique receptor system that includes death receptors and decoy receptors. DR5 TRAIL receptor is an originally identified p53-regulated death receptor gene that was induced, by doxorubicine, only in cells with a wild-type p53 status. We investigated that focused on the correlation between the DR5 and p53 expressions in non-small cell lung cancer (NSCLC). Methods: Immunohistochemical analysis, with using avidin-biotinylated horseradish peroxidase complex, was carried out in 89 surgically resected NSCLC formalin-fixed paraffin-embedded tissue sections. As primary antibodies, we used anti-DR5 polyclonal antibody and anti-p53 monoclonal antibody. A negative control was processed with each slide. The positive tumor cells were quantified twice and these values were expressed as percentage of the total number of tumor cells, and the intensity of immunostaining was expressed. The analysis of the DR5 expression was done separately in tumor area and in a nearby region of normal tissue. Results: The DR5 expression was high in the bronchial epithelium (89% of cases) but this was almost absent in type I & II pneumocytes, lymphocytes and smooth muscle cells. High DR5 expression rate in tumor was seen in 28% (15/53) of squamous cell carcinomas, in 47% (15/32) of adenocarcinomas and, in 50% (2/4) of large cell carcinomas. The DR5 expression did not show any statistical significance relationship with the T stage, N stage, or survival. However, the DR5 expression showed significant inverse correlation with the p53 expression. (p< 0.01). Conclusion: We demonstrated that the DR5 expression in NSCLC via immunohistochemical analysis is relatively tumor-specific except for that in the normal bronchial epithelium and it is significantly dependent on the p53 status. This might be in vivo evidence for the significance of the DR5 gene as a p53 downstream gene.

A Case of Congenital Cystic Adenomatoid Malformation of the Lng with Atypical Adenomatous Hyperplasia in Adult (성인에서 발견된 비정형 샘 증식증과 동반된 폐의 선천성 낭성 선종양 기형 1예)

  • Lee, Ho Sung;Choi, Jae Sung;Seo, Ki Hyun;Na, Ju Ock;Kim, Yong Hoon;Oh, Mi Hye;Jou, Sung Shick
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.5
    • /
    • pp.385-389
    • /
    • 2009
  • Congenital cystic adenomatoid malformation (CCAM), which is classified into five types according to size and bronchial invasion, is a rare type of developmental anomaly of the lung. CCAM is occasionally accompanied by malignancy, such as bronchioloalveolar carcinoma (BAC) or rhabdomyosarcoma. As defined by the WHO, atypical adenomatous hyperplasia (AAH) is a non-invasive spread of atypical epithelial cells in single rows along the alveolar wall, within a lesion that is usually less than 5 mm in diameter. AAH was also regarded as a pre-invasive neoplasia, especially associated with BAC and adenocarcinoma. We report a case of type II CCAM with AAH in adults, with a review of the references.

Prognostic Significance of Cyclooxygenase-2(COX-2) Expression in Primary, Resected Non-Small Cell Lung Cancer (원발성 비소세포폐암조직에서 Cyclooxygenase-2 발현의 예후인자로서의 의의)

  • Kim, Hak Ryul;Yang, Sei Hoon;Jeong, Eun Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.2
    • /
    • pp.169-177
    • /
    • 2004
  • Background : Cyclooxygenase is the main target enzyme for the nonsteroidal anti inflammatory drugs (NSAIDs) that have been shown to suppress carcinogenesis in both experimental models and epidemiological studies. COX-2 plays an important role in solid tumor growth, invasiveness and angiogenesis, through, in part, the synthesis of prostaglandins, such as prostaglandin E2 (PGE2). In this study, the prognostic significance of an increase in COX-2 expression in lung cancer samples was evaluated. Material and Methods : The expression of COX-2, by immunohistochemistry, was studied in paraffin-embedded tumor blocks obtained from 84 patients(male 67, female 17, with a mean age of 63, ranging from 34 to 84 years) who had undergone surgery at Wonkwang University Hospital, between 1997 and 2002. For the evaluation of the relationships between COX-2 expression, and the clinical stage, metastasis to lymph nodes and survival, those cases showing the respective antigen expression in >10% of the tumor cells were considered positive. Result : Of the 84 patients, 61 (73%) exhibited more than 10% COX-2 immunoreactivities in the tumor and normal cells, whereas the remaining 23 showed no increase in the expression of COX-2. There was no significant relationship between the increased expression of COX-2 and the disease stage(p=0.1002) or cell type(p=0.152). The median survival was longer for the patients with a negative, compared to positive, COX-2 expression(36 compared to 24 months, p<0.05). The two year-survival rate was also higher in the patients with a negative COX-2 expression (78%) than those with a positive expression (47%, Kaplan-Meier, Log Rank, p < 0.05). Conclusion : The median survival was longer in the patients with a negative, compared to positive, COX-2 expression was longer than those with positive COX-2, having undergone complete resection due to primary non-small cell lung cancer.