• Title/Summary/Keyword: lunar exploration

Search Result 135, Processing Time 0.021 seconds

Development of a New Pressure-Sinkage Model for Rover Wheel-Lunar Soil Interaction based on Dimensional Analysis and Bevameter Tests

  • Lim, Yujin;Le, Viet Dinh;Bahati, Pierre Anthyme
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.237-250
    • /
    • 2021
  • A rover is a planetary surface exploration device designed to move across the ground on a planet or a planetary-like body. Exploration rovers are increasingly becoming a vital part of the search for scientific evidence and discoveries on a planetary satellite of the Sun, such as the Moon or Mars. Reliable behavior and predictable locomotion of a rover is important. Understanding soil behavior and its interaction with rover wheels-the terramechanics-is of great importance in rover exploration performance. Up to now, many researchers have adopted Bekker's semiempirical model to predict rover wheelsoil interaction, which is based on the assumption that soil is deformable when a pressure is applied to it. Despite this basic assumption of the model, the pressure-sinkage relation is not fully understood, and it continues to present challenges for rover designers. This article presents a new pressure-sinkage model based on dimensional analysis (DA) and results of bevameter tests. DA was applied to the test results in order to propose a new pressure-sinkage model by reducing physical quantitative parameters. As part of the work, a new bevameter was designed and built so that it could be successfully used to obtain a proper pressure-sinkage relation of Korean Lunar Soil Simulant (KLS-1). The new pressure-sinkage model was constructed by using three different sizes of flat plate diameters of the bevameter. The newly proposed model was compared successfully with other models for validation purposes.

Analysis Methods of Visible and Near-Infrared (VNIR) Spectrum Data in Space Exploration (우주탐사에서의 가시광-근적외선 분광 자료 분석 기법)

  • Eung Seok Yi;Kyeong Ja Kim;Ik-Seon Hong;Suyeon Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.154-164
    • /
    • 2023
  • In space exploration, spectroscopic observation is useful for understanding objects' composition and physical properties. There are various methods for analyzing spectral data, and there are differences depending on the object and the wavelength. This paper introduces a method for analyzing visible & nearinfrared (VNIR) spectral data, which is mainly applied in lunar exploration. The main analysis methods include false color ratio image processing, reflectance pattern analysis, integrated band depth (IBD) processing, and continuum removal as preprocessing before analysis. These spectroscopic analysis methods help to understand the mineral properties of the lunar surface in the VNIR region and can be applied to other celestial bodies such as Mars.

Satellite Trajectory Correction Maneuver for Lunar Mission based on Three-Body Dynamics (달탐사 임무를 위한 3체 운동방정식 기반의 인공위성 궤적보정 기동)

  • Cho, Dong-Hyun;Jung, Young-Suk;Lee, Dong-Hun;Jung, Bo-Young;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.875-881
    • /
    • 2010
  • During the lunar mission, spacecraft are subject to various unexpected disturbance sources such as third body attraction, solar pressure and operating impulsive maneuver error. Therefore, efficient trajectory correction maneuver (TCM) strategy must be required to follow the designed mission trajectory. In the early days of space exploration, the mission trajectory has been designed by using patched conic approach based on two-body dynamics for the lunar mission. Thus the TCM based on two-body dynamics has been usually adopted. However, with the advanced in computing power, the mission trajectory based on three-body dynamics is attempted recently. Thus, these approaches based on two-body dynamics are essentially different from real environment and large amount of energy for the TCM is required. In this work, we study the trajectory correction maneuver based on three-body dynamics.

Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1 (한국형 인공월면토 생산 시스템 효율성 및 Fe(0) 모사를 위한 수소 환원반응에 관한 실험적 평가)

  • Jin, Hyunwoo;Kim, Young-Jae;Ryu, Byung Hyun;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.17-25
    • /
    • 2020
  • Korea Institute of Civil Engineering and Building Technology has constructed a large scale Dust Thermal Vacuum Chamber to simulate extreme lunar terrestrial environments and to study the Moon as an outposts for space development and exploration. Although a large amount of KLS-1 (Korean Lunar Simulant-1) is required for research, its massive production is practically difficult. This paper describes semi-automatic manufacturing system for massive production of KLS-1 in detail, which is seven times more efficient than manual production. In addition, to increase the similarity with lunar regolith, hydrogen reduction reaction using ilmenite which is one of the minerals was also conducted to simulate nanophase Fe(0) which is the unique property of lunar regolith. As a result, it was found that np-Fe(0) was formed at a temperature of 700℃ or higher, and increased in proportion to the temperature until 900℃.

Development of Space Internet Technology for Korea Lunar Exploration (국내 달 탐사를 위한 우주인터넷 기술개발)

  • Jo, J.H.;Ji, S.A.;Lee, B.S.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.3
    • /
    • pp.116-127
    • /
    • 2017
  • 우리나라는 2단계에 걸친 달 탐사 계획을 세우고 있다. ETRI는 국내 달 탐사 프로그램에 참여하여 우주인터넷 통신기술 및 탐사선 간 통신을 위한 Proximity-1 통신장치를 개발할 계획이다. 본고에서는 우주인터넷의 기술개요와 기술동향을 알아보고 국내 개발계획에 대하여 살펴본다. 아울러 Proximity-1의 기술개요, 규격 및 국내개발 방향에 대하여 함께 살펴보고자 한다.

Suggestion of Korea's Deep Space Exploration Roadmap through Participation to the Artemis International Manned Lunar Exploration Program (한국의 Artemis 국제공동 유인달탐사 참여를 중심으로 우리나라 심우주탐사 로드맵 제안)

  • Choi, Gi-Hyuk;Kim, Dae-Yeong
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.52-65
    • /
    • 2022
  • Korea is near close the success on the indigenous launch vehicle KSLV-2 after the second test launch during the second half of 2022, and the satellite development has been already in the level of advanced country. After the such mature of satellite and launch vehicle technologies, Korea's space development main theme should be 'Space Exploration and Space Application', and paradigm should be changed from 'Hardware' to 'Scientific/Technological Mission', from 'Unmanned' to 'Manned'. Korea's prime space strategy should be the direction of expansion of space industry, creation of employment and secure the key technologies, improvement of convenience and safety of people. For the purpose it is necessary to start 'Manned Space Development' such that participation to 'Artemis and Gateway Program' in 20s' and manned Mars exploration in 30s' which would be carried out by means of global international cooperation, and which could be a good opportunity to explore the new area of space development and upgrade national technology capability. Taking advantage of this opportunity, it is required for Korea to join the international programs through developing indigenous challenging, sustainable Korean mission and hardware. Also selection of the 2nd Korean Astronaut could draw national attention, especially could give dreams to young generation. Participation to the Artemis program could be the opportunity of entering the major space fairing nation and boosting up national pride. In this study we survey and analyze the Artemis Program in detail, and in conclusion we suggest the strategy of Korea's participation to the Artemis Program.

Dynamics of Extra-Vehicular Activities in Low-Gravity Surface Environments

  • Spencer, David A.;Gast, Matthew A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Human spaceflight experience in extra-vehicular activity (EVA) is limited to two regimes: the micro-gravity environment of Earth orbit, and the lunar surface environment at one-sixth of Earth's gravity. Future human missions to low-gravity bodies, including asteroids, comets, and the moons of Mars, will require EVA techniques that are beyond the current experience base. In order to develop robust approaches for exploring these small bodies, the dynamics associated with human exploration on low-gravity surface must be characterized. This paper examines the translational and rotational motion of an astronaut on the surface of a small body, and it is shown that the low-gravity environment will pose challenges to the surface mobility of an astronaut, unless new tools and EVA techniques are developed. Possibilities for addressing these challenges are explored, and utilization of the International Space Station to test operational concepts and hardware in preparation for a low-gravity surface EVA is discussed.

Rendezvous Mission to Apophis: I. Mission Overview

  • Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2021
  • An asteroid is important for understanding the condition of our solar system in early-stage because an asteroid, considered as a building block of the solar system, preserves the information when our solar system was formed. It has been continuously flowing into the near-Earth space, and then some asteroids have a probability of impacting Earth. Some asteroids have valuable minerals and volatiles for future resources in space activity. Korean government clarified, in the 3rd promotion plan for space activity, an asteroid sample return mission by the mid-2030s. However, it is almost impossible to do so based on only a single experience of an exploration mission to the Moon, Korea Pathfinder Lunar Orbiter, which will be launched in mid-2022. We propose a Rendezvous Mission to Apophis(RMA), beneficial in terms of science, impact hazardous, resource, and technical readiness for the space exploration of Korea.

  • PDF

Conceptual Design of Rover's Mobility System for Ground-Based Model (지상시험모델 로버 주행장치 개념 설계)

  • Kim, Youn-Kyu;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup;Jeon, Sang-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.677-692
    • /
    • 2009
  • In recent years, lots of studies on the planetary rover systems have been performed around space advanced agencies such as NASA, ESA, JAXA, etc. Among the various technologies for the planetary rover system, the mobility system, navigation algorithm, and scientific payload have been focused particularly. In this paper, the conceptual design for a ground-based model of planetary rover's mobility system to evaluate mobility and moving stability on ground is presented. The status of overseas research and development of the planetary rover systems is also addressed in terms of technical issues. And then, the requirements of the planetary rover's mobility system are derived by means of considering mobility and stability. The designed rover's mobility system has an active suspension with 6 legs that controls 6 joints on the each leg in order to achieve high stability and mobility. This kind of mobility system has already applied to the ATHELE of NASA for various purposes such as transportation and habitation for human lunar exploration activities in the near future (i.e., Constellation program). However, the proposed system has been designed by focusing on the small-sized unmanned explorations, which may be applied for the future Korea Lunar exploration missions. Therefore, we expect that this study will be an useful reference and experience in order to develop the planetary exploration rover system in Korea.

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.