DOI QR코드

DOI QR Code

Analysis Methods of Visible and Near-Infrared (VNIR) Spectrum Data in Space Exploration

우주탐사에서의 가시광-근적외선 분광 자료 분석 기법

  • Eung Seok Yi (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Kyeong Ja Kim (Korea Institute of Geoscience and Mineral Resources) ;
  • Ik-Seon Hong (Korea Institute of Geoscience and Mineral Resources) ;
  • Suyeon Kim (Korea Institute of Geoscience and Mineral Resources)
  • Received : 2023.03.21
  • Accepted : 2023.04.10
  • Published : 2023.05.31

Abstract

In space exploration, spectroscopic observation is useful for understanding objects' composition and physical properties. There are various methods for analyzing spectral data, and there are differences depending on the object and the wavelength. This paper introduces a method for analyzing visible & nearinfrared (VNIR) spectral data, which is mainly applied in lunar exploration. The main analysis methods include false color ratio image processing, reflectance pattern analysis, integrated band depth (IBD) processing, and continuum removal as preprocessing before analysis. These spectroscopic analysis methods help to understand the mineral properties of the lunar surface in the VNIR region and can be applied to other celestial bodies such as Mars.

우주탐사에서 분광관측은 대상의 구성 성분과 물리적 특성을 이해하는 데 유용한 방법이다. 분광 자료 분석에는 여러 가지 방법이 있으며, 관측 대상과 파장대역에 따라 차이가 있다. 본 논문에서는 달 탐사에서 주로 적용하는 가시광-근적외선(visible & near-infrared, VNIR) 분광 자료 분석 방법에 대해 소개한다. 주요 분석 방법에는 가색상 비율(false color ratio) 영상 처리, 반사도 유형(reflectance pattern) 분석, 통합 대역 깊이(integrated band depth, IBD) 계산이 있으며, 분석 이전의 전처리로는 연속체 제거(continuum removal)가 있다. 이러한 분광 분석 방법들은 가시광-근적외선 영역에서 나타나는 달 표면의 광물 특성을 이해하는데 도움이 되며, 화성과 같은 다른 천체에도 적용할 수 있다.

Keywords

Acknowledgement

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(NRF-2022R1A2C1092602). 또한 이 연구는 정부(과학기술정보통신부)의 재원으로 한국지질자원연구원의 지원을 받아 수행되었습니다(KIGAM, 23-3216).

References

  1. Pieters CM, Hanna KD, Cheek L, Dhingra D, Prissel T, et al., The second conference on the lunar highlands crust and new directions. The distribution of Mg-spinel across the Moon and constraints on crustal origin, Am. Mineral. 99, 1893-1910 (2014). https://doi.org/10.2138/am-2014-4776
  2. Pieters CM, Staid MI, Fischer EM, Tompkins S, He G, A sharper view of impact craters from clementine data, Science 266, 1844-1848 (1994). https://doi.org/10.1126/science.266.5192.1844
  3. Thesniya PM, Rajesh VJ, Pyroxene chemistry and crystallization history of basaltic units in the Mare Humorum on the nearside of the Moon: implications for the volcanic history of the region, Planet. Space Sci. 193, 105093 (2020). https://doi.org/10.1016/j.pss.2020.105093
  4. Wohler C, Grumpe A, Berezhnoy AA, Feoktistova EA, Evdokimova NA, et al., Temperature regime and water/hydroxyl behavior in the crater Boguslawsky on the Moon, Icarus 285, 118-136 (2017). https://doi.org/10.1016/j.icarus.2016.12.026
  5. Hong IS, Yi Y, Kim E, Lunar pit craters presumed to be the entrances of lava caves by analogy to the Earth lava tube pits, J. Astron. Space Sci. 31, 131-140 (2014). https://doi.org/10.5140/JASS.2014.31.2.131
  6. Yi ES, Kim KJ, Choi YR, Kim YH, Lee SS, et al., Investigation of reflectance distribution and trend for the double ray located in northwest of Tycho crater, J. Astron. Space Sci. 32, 161-166 (2015). https://doi.org/10.5140/JASS.2015.32.2.161
  7. Kim S, Yi Y, Hong IS, Sohn J, Solar insolation effect on the local distribution of lunar hydroxyl, J. Astron. Space Sci. 35, 47-54 (2018). https://doi.org/10.5140/JASS.2017.35.1.47
  8. Djachkova MV, Litvak ML, Mitrofanov IG, Sanin AB, Selection of Luna-25 landing sites in the south polar region of the Moon, Sol. Syst. Res. 51, 185-195 (2017). https://doi.org/10.1134/S0038094617030029
  9. Jawin ER, Valencia SN, Watkins RN, Crowell JM, Neal CR, et al., Lunar science for landed missions workshop findings report, Adv. Earth Space Sci. 6, 2-40 (2018). https://doi.org/10.1029/2018EA000490
  10. Kim KJ, Wohler C, Ju GH, Lee SR, Rodriguez AP, et al., Korean lunar lander - concept study for landing-site selection for lunar resource exploration, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41, 417-423 (2016). https://doi.org/10.5194/isprs-archives-XLI-B4-417-2016
  11. Stuart BH, Infrared Spectroscopy: Fundamentals and Applications (John Wiley & Sons, Hoboken, NJ, 2004).
  12. Nicholas M, Short S, Remote sensing tutorial (1999) [Internet], viewed 2023 Jun 15, available from: http://priede.bf.lu.lv/GIS/.Descriptions/RST/Sect13/nicktutor_13-7.shtml
  13. Shaple P, Heat absorbing gases (2011) [Internet], viewed 2023 Jun 15, available from: http://butane.chem.uiuc.edu/pshapley/GenChem1/L15/2.html
  14. Heiken G, Vaniman D, French BM, Lunar Sourcebook: A User's Guide to the Moon (Cambridge University Press, Cambridge, UK, 1991).
  15. Rencz AN, Ryerson RA, Manual of Remote Sensing, Remote Sensing for the Earth Sciences (John Wiley & Sons, Hoboken, NJ, 1999).
  16. Son YS, Kim KE, Yoon WJ, A review of remote sensing techniques and applications for geoscience and mineral resources, J. Korean Soc. Miner. Energy Resour. Eng. 52, 429-457 (2015). https://doi.org/10.12972/ksmer.2015.52.4.429
  17. McEwen AS, Robinson MS, Eliason EM, Lucey PG, Duxbury TC, et al., Clementine observations of the Aristarchus region of the Moon, Science 266, 1858-1862 (1994). https://doi.org/10.1126/science.266.5192.1858
  18. Nozette S, Rustan P, Pleasance LP, Kordas JF, Lewis IT, et al., The clementine mission to the Moon: scientific overview, Science 266, 1835-1839 (1994). https://doi.org/10.1126/science.266.5192.1835
  19. Qiao L, Head JW, Xiao L, Wilson L, Dufek JD, The role of substrate characteristics in producing anomalously young crater retention ages in volcanic deposits on the Moon: morphology, topography, subresolution roughness, and mode of emplacement of the Sosigenes lunar irregular mare patch, Meteorit. Planet. Sci. 53, 778-812 (2018). https://doi.org/10.1111/maps.13003
  20. Robinson M, Riner M, Advances in lunar science from the Clementine mission: a decadal perspective, J. Earth Syst. Sci. 114, 669-686 (2005). https://doi.org/10.1007/BF02715951
  21. Kim S, Kim KJ, Yi Y, Investigation on lunar landing candidate sites for a future lunar exploration mission, Int. J. Aeronaut. Space Sci. 23, 221-232 (2022). https://doi.org/10.1007/s4 2405-021-00433-4
  22. Yi ES, Kim KJ, Wohler C, Berezhnoy AA, Kim YH, et al., Petrological and mineralogical characteristics of exposed materials on the floors of the Lavoisier and surrounding craters, Remote Sen. 14, 4313 (2022). https://doi.org/10.3390/rs14174313
  23. Meer F, Analysis of spectral absorption features in hyperspectral imagery, Int. J. Appl. Earth Obs. Geoinform. 5, 55-68 (2004). https://doi.org/10.1016/j.jag.2003.09.001
  24. Chi K, Lee SS, Lee H, Spectral Library of Surface Cladding - Rock, Vegetation, Artificial Structure (KIGAM, Daejeon, Korea, 2007).
  25. KIGAM, 50,000 geological maps: Korea geological map: geological map manual 33 (Miryang) (1988) [Internet], viewed 2023 Jun 14, available from: https://data.kigam.re.kr/data/7097ee0f-e7ca-431a-9151-23fd54c09069?lang=en
  26. Blewett DT, Lucey PG, Ray Hawke B, Jolliff BL, Clementine images of the lunar sample-return stations: refinement of FeO and TiO2 mapping techniques, J. Geophys. Res. Planets 102, 16319-16325 (1997). https://doi.org/10.1029/97JE01505
  27. Nagaoka H, Takeda H, Karouji Y, Ohtake M, Yamaguchi A, et al., Implications for the origins of pure anorthosites found in the feldspathic lunar meteorites, Dhofar 489 group, Earth Planet. Space 66, 115 (2014). https://doi.org/10.1186/1880-5981-66-115
  28. Pieters C, McCord TB, Characterization of lunar mare basalt types: I. a remote sensing study using reflection spectroscopy of surface soils, in 7th Lunar and Planetary Science Conference Proceedings, Houston, TX, 15-19 Mar 1976.
  29. Besse S, Sunshine JM, Gaddis LR, Volcanic glass signatures in spectroscopic survey of newly proposed lunar pyroclastic deposits, J. Geophys. Res. Planets 119, 355-372 (2014). https://doi.org/10.1002/2013JE004537
  30. Brown, Lunar Rock and Mineral Characterization Database, RELAB (2011) [Internet], viewed 2023 Jun 6, available from: https://sites.brown.edu/relab/lunar-rock-and-mineral-characterization-database/
  31. Grumpe A, Wohler C, Berezhnoy AA, Shevchenko VV, Time-of-day-dependent behavior of surficial lunar hydroxyl/water: observations and modeling, Icarus 321, 486-507 (2019). https://doi.org/10.1016/j.icarus.2018.11.025
  32. Lemelin M, Lucey PG, Miljkovic K, Gaddis LR, Hare T, et al., The compositions of the lunar crust and upper mantle: spectral analysis of the inner rings of lunar impact basins, Planet. Space Sci. 165, 230-243 (2019). https://doi.org/10.1016/j.pss.2018.10.003
  33. Nettles JW, Staid M, Besse S, Boardman J, Clark RN, et al., Optical maturity variation in lunar spectra as measured by Moon Mineralogy Mapper data, J. Geophys. Res. Planets 116, E00G17 (2011). https://doi.org/10.1029/2010JE003748
  34. Ohman T, Kramer GY, Kring DA, Characterization of melt and ejecta deposits of Kepler crater from remote sensing data, J. Geophys. Res. Planets 119, 1238-1258 (2014). https://doi.org/10.1002/2013JE004501
  35. Clark RN, Swayze GA, Eric Livo K, Kokaly RF, Sutley SJ, et al., Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems, J. Geophys. Res. Planets 108, 5131 (2003). https://doi.org/10.1029/2002JE001847