• Title/Summary/Keyword: luminescence identification

Search Result 28, Processing Time 0.031 seconds

Identification of a Regulatory Region within the luxR Structural Gene in a Marine Symbiotic Bacterium, Vibrio fischeri

  • Choi, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.176-182
    • /
    • 1994
  • The light-organ symbiont of pine cone fish, Vibrio fischeri, senses its presence in the host and responds to environmental changes by differentially expressing its symbiosis-related luminescence genes. The V. fischeri luminescence genes are activated by LuxR protein in the presence of an autoinducer. In an effort to elucidate the mechanism of regulation of luxR, a plasmid containing luxR was mutagenized in vitro with hydroxylamine and a luxR mutant plasmid was isolated by its ability to activate luminescence genes cloned in E. coli in the absence of the autoinducer. The specific base change identified by DNA sequencing was only single base transition at +78 from the transcriptional start of luxR. Based on a Western immunoblot analysis, the nucleotide change directed the synthesis of much higher level of LuxR protein without any amino acid substitutions. The results suggest that the region including the +78th base is presumably internal operator required for autorepression of luxR, and the increased cellular level of LuxR results in activation of luminescence genes by autoinducer independent fashion.

  • PDF

Identification of Irradiated Granule-Type Ramen Soup Powder by Pulsed Photostimulated Luminescence and Thermoluminescence during Storage

  • Yi, Sang-Duk;Yang, Jae-Seung;Kim, Dong-Woo;Shin, Doo-Ho;Jo, Gab-Yeon;Chang, Kyu-Seob;Oh, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.79-84
    • /
    • 2003
  • This study was carried out to establish a method for determining if granule-type Ramen soup powder has been irradiated. Thermoluminescence (TL) and pulled photostimulated luminescence (PPSL) were used as the detection methods through observed changes of TL and PPSL intensities after storage under differing conditions. PPSL intensities increased with increases in irradiation doses. The threshold level of PPSL was below 412$\pm$58 photon counts regardless of storage conditions (room and darkroom) after 10 months. TL intensities also increased with increasing irradiation doses. The coefficients ($R^2$) of PPSL (0.74~0.94) and TL intensities (0.92~0.58) were very highly correlated with irradiation dose. The PPSL and TL intensities were decreased after 10 months of storage. These results indicate that discrimination of irradiated from non-irradiated granule-type Ramen soup powder is possible using TL and PPSL methods despite the decrease in intensities of TL and PPSL with increasing storage times.

Luminescence properties and compositions of contaminating inorganic minerals separated from gamma-irradiated fresh and white ginsengs from different areas

  • Ahn, Jae-Jun;Akram, Kashif;Jeong, Mi-Seon;Kwak, Ji-Young;Park, Eun-Joo;Kwon, Joong-Ho
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.483-490
    • /
    • 2013
  • Gamma-irradiation (0-7 kGy) of ginseng is permitted in Korea for the purpose of microbial decontamination; with strict labeling, traceability and monitoring requirements. An identification study was conducted to determine the photostimulated-luminescence (PSL) and thermoluminescence (TL) properties of gamma-irradiated fresh and white ginsengs cultivated in different areas. Dose- dependent PSL-based screening was possible for white ginseng samples; however, inappropriate results from non-irradiated fresh ginseng samples were obtained, showing intermediate (700 to 5,000) or positive ($T_2$ >5,000, irradiated) PSL counts due to the abundance of minerals on the surfaces of the samples. TL analysis of separated minerals from all non-irradiated samples gave TL glow curves of low intensity with a maximum peak after $300^{\circ}C$. However, well-defined irradiation-specific (high intensity with a maximum peak at about $200^{\circ}C$) glow curves were observed for all the irradiated samples, regardless of their type and origins. TL ratios (first glow curve /second glow curve) were also determined to confirm the irradiated (>0.1) and non-irradiated (<0.1) results. SEM-EDX (scanning electron microscope-energy dispersive X-ray) and XRD (X-ray diffraction) spectroscopic analyses showed that feldspar and quartz minerals were the main source for the typical radiation-specific luminescence properties.

Luminescence Identification Characteristics for Irradiated Dried Fishery Products (조사처리한 건조수산품의 전처리 방법에 따른 Luminescence 판별 특성)

  • Kim, Moon-Young;Ahn, Jae-Jun;Kim, Gui-Ran;Kwak, Ji-Young;Park, Kun-Sang;Lee, Kyung-Jin;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1837-1842
    • /
    • 2013
  • Photostimulated luminescence (PSL) and thermoluminescence (TL) analyses were conducted for the detection of different gamma-irradiated dried fishes (mussel, squid, beka squid, mitra squid, plaice, and saury) at 0, 1, 5 and 10 kGy. For TL analysis, the contaminating silicate minerals were obtained by density separation or acid hydrolysis treatment. PSL determinations indicated that all the non-irradiated samples showed PSL photon counts/60 s (PCs) lower than 700 PCs (negative), but the irradiated mussel sample at 5 and 10 kGy were only possibility identified showing higher than 5000 PCs (positive). Irrespective of sample kinds and methods of mineral separation, all the non-irradiated samples showed TL glow curves in low-intensity with a maximum peak only after $250^{\circ}C$. However, all the irradiated samples produced TL glow curves in high intensity with a maximum peak particularly in the temperature range of 1$150{\sim}250^{\circ}C$. In conclusion, more distinguishable TL results [glow curve, TL ratio ($TL_1/TL_2$)] were obtained from the marker minerals separated by acid hydrolysis rather than density method.

Identification Characteristics of Irradiated Dried-Spicy Vegetables by Analyzing Photostimulated Luminescence (PSL), Thermoluminescence (TL) and Electron Spin Resonance (ESR) (방사선조사 건조향신채소의 PSL, TL 및 ESR 검지 특성)

  • Kwon Joong-Ho;Kim Mi-Yeung;Kim Byeong-Keun;Lee Jeong-Eun;Kim Dong-Ho;Lee Ju-Woon;Byun Myung-Woo;Lee Chang-Bok
    • Food Science and Preservation
    • /
    • v.13 no.1
    • /
    • pp.50-54
    • /
    • 2006
  • The identification characteristics of inadiated dried onion and garlic at 1, 4 and 7 kGy were investigated by analyzing their photostimulated luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR). The PSL results showed that the photon counts of non-irradiated dried onion were less than 700 (negative) and those of irradiated samples at 1kGy or more were over 5000 (positive), making it possible to discriminate non-irradiated onions from irradiated ones. However, the intermediate counts (700-5000) were observed in irradiated garlic at 1 and 4 kGy, even though positive counts were measured in 7 kGy group. Radiation-induced TL glow curves $(TL_1)$ were measured at $150^{\circ}C$ range in both irradiated onion and garlic samples at 1 kGy or more, which could identify irradiated groups. Furthermore, determination of TL ratios $(TL_1/TL_2)$ for both samples could verify the above results. It was found, however, that ESR spectroscopy was not suitable for the detection of irradiated dried onion and garlic.

Luminescence Detection Characteristics for Irradiated Dried Fishes Using PSL-TL System (Photostimulated luminescence-thermoluminescence 분석체계를 이용한 조사 처리된 건어류의 luminescence 판별 특성)

  • Kim, Moon-Young;Kim, Gui-Ran;Ahn, Jae-Jun;Park, Kun-Sang;Kim, Eun-Jeong;Lee, Kyung-Jin;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.8-12
    • /
    • 2013
  • Photostimulated luminescence (PSL) and thermoluminescence (TL) analyses were conducted for the detection of different irradiated dried fishes. All the non-irradiated samples provided PSL counts of lower than 700 (negative: $T_1$). Clear identification of irradiated sample was only possible for irradiated anchovy with PSL counts >5000; however, the results were unsatisfactory (not positive) for irradiated cod, dried filefish, hairtail, and herring samples. The contaminating silicate minerals were obtained by density separation or acid hydrolysis to perform TL analysis, which resulted in a low intensity of TL glow curve with a maximum peak after $250^{\circ}C$ for the non-irradiated samples that are irrespective of their kinds and methods for the mineral separation. The TL glow curves of high intensity with maximum peak in the temperature range of $150-250^{\circ}C$ were observed for all the irradiated samples. However, better results of TL glow curves and particularly of the TL ratio ($TL_1/TL_2$) were obtained when the minerals were separated by a acid hydrolysis method.

Properties of PSL, TL, and ESR to Identify the Irradiated Sesame Seeds after Steaming

  • Lee, Jeon-Geun;Kausar, Tusneem;Chung, Hyung-Wook;Jeong, Il-Yun;Bhatti, Ijaz A.;Kwon, Joong-Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.374-378
    • /
    • 2009
  • Three physical methods, photostimulated luminescence (PSL), thermoluminescence (TL), and electron spin resonance (ESR), have been applied to detect the irradiation treatment for the non- and steamed sesame seed samples. PSL successfully screened the irradiated samples from the non-irradiated control by comparing their photon counts (PCs) with the lower (less than 700 count/60 sec) and upper threshold values (higher than 5,000 count/60 sec). TL signals were still detected in all irradiated samples even after steaming, which was reconfirmed with TL ratios [integrated area of $TL_1$ (the first glow)/$TL_2$ (the second glow)] through re-irradiation step. ESR spectrometry showed that radiation-induced cellulose radicals were detected in all the irradiated samples irrespective of steaming treatment. Identification of the irradiated sesame seeds was possible even after steaming by analyzing PSL, TL, and ESR.

Identification of Irradiated Food Additives by Photostimulated Luminescence (PSL) Method (Photostimulated Luminescence (PSL) 방법에 의한 국내 유통 분말형 식품가공원료의 방사선 조사 여부 모니터링)

  • Yun, Hyejeong;Hur, Jungmu;Yang, Suhyung;Lee, Byoung-Hun;Kwon, Joong-Ho;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • Photostimulated luminescence (PSL), electron spin resonance (ESR) and thermoluminescence (TL) analyses were conducted to detect whether 258 kinds of extracted and powdered forms food additives were irradiated or not. In a view of the PSL results, 9 kinds of the extracted and powdered samples (3.2%) showed over 5,000 photon counts $(60sec)^{-1}$ and these samples were judged to be irradiation-positive. Thirty nine kinds of the samples (15.6%) yielded 700~5,000 photon counts $(60sec)^{-1}$ and these samples were grouped into irradiation-potential, while the samples showed below 700 photon counts $(60sec)^{-1}$ sec were judged to be irradiation-negative. TL glow curves for minerals separated from 5 samples were detected at $150^{\circ}C$ with high intensity. However, TL analysis did not apply to other irradiation-positive and irradiation-potential samples because the minerals for TL detection were not separated from the samples. ESR measurements for irradiation-positive and irradiation-potential samples, judged by PSL detection, showed no specific signals to irradiation. The results indicated that PSL could be applied to identify irradiation treatment of extracted and powdered food additives, while TL was optional and ESR was not suitable for detection extracted and powdered food additives.

Physicochemical Identification Characteristics of Irradiated Brown Rice, Soybean and Sesame Seeds during Storage (방사선 조사된 현미, 대두 및 참깨의 저장기간에 따른 방사선 조사여부의 이화학적 판별 특성)

  • Lee, Jeong-Eun;Ahn, Jae-Jun;Kwon, Joong-Ho
    • Food Science and Preservation
    • /
    • v.19 no.1
    • /
    • pp.37-46
    • /
    • 2012
  • The identification characteristics of irradiated (0.5, 1, 2, and 4 kGy) brown rice, soybean, and sesame seeds were investigated using photostimulated luminescence (PSL), thermoluminescence (TL), and hydrocarbon analysis during 12-month storage. PSL-based screening was possible for the irradiated soybean and sesame seed samples up to 6 and 12 months, respectively. The TL glow curve shape, intensity, and ratio enabled the clear dose-dependent discrimination of all the non-irradiated and irradiated samples. The TL intensity decreased during storage, but the TL glow curve did not change qualitatively, which provided enough information to confirm the irradiation treatment of the samples over the storage period. Radiation-induced hydrocarbons were found in all the irradiated samples even at 0.5 kGy, throughout the storage period. 8-Heptadecene ($C_{17:1}$) and 1,7-hexadecadiene ($C_{16:2}$) originated from oleic acid, and 6,9-heptadecadiene ($C_{17:2}$) and 1,7,10-hexadecatriene ($C_{16:3}$) originated from linoleic acid, can be used as radiation-induced markers in identifying irradiated brown rice, soybean, and sesame seeds.

Identification of Europium(III) Hydroxide Formation by Eu(III) Luminescence Specroscopy

  • 이병호;박영재;문희정
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.654-657
    • /
    • 1995
  • A series of excitation spectra (7Fo→5Do transition) of Eu(Ⅲ) ion in aqueous solution ([Eu(Ⅲ)]=1.12 × 10-2 mol L-1; pH 1.0 to 7.0) were obtained under CO2 free atmosphere using a pulsed tunable dye laser system. The broad and low intensity spectra (peak maximum: 578.89 nm) showed that the trivalent ion (Eu3+) underwent a low degree of hydrolysis at pH below 6.0. Eu(Ⅲ) hydroxo complex formation seemed more significant at pH above 6.0, shown by the occurrence of intense new peak at 578.63 nm. The spectra of those solutions prepared in N2 atmosphere showed no signs of the presence of interfering carbonate species. The Eu(Ⅲ) hydroxo complex formation was not observed when complexation studies between Eu(Ⅲ) ion and weak organic acids (e.g. glutarate and diglycolate) were conducted at pH 6.0 or below.