• Title/Summary/Keyword: luminescence dating

Search Result 28, Processing Time 0.035 seconds

Optical dating of Quaternary sediment (광 여기 루미네센스를 이용한 신기 퇴적층의 연대측정)

  • 홍덕균;최정헌;한정희;최만식;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.202-211
    • /
    • 2001
  • Luminescence is a physical phenomenon exhibited by many non-conducting, crystalline materials, such as quartz and feldspar. Within the crystals, energy absorbed from ionising radiation frees electrons to move through the crystal lattice and some are trapped at defects in the lattice. Observable luminescence is produced by electrons, released from traps by stimulation by absorption of light, which recombine with lattice defects which act as luminescence centers - optically stimulated luminescence (OSL). In a similar way to thermoluminescence(TL) dating, controlled measurement of the OSL signal can provide a means of determining the time since the last exposure of a layer of sediment to sunlight, the age of the sediment. However, whereas in the thermoluminescence dating of sediment only part of the latent thermoluminescence signal is bleached by sunlight as the sediment is deposited and allowance must be made during the laboratory measurements for the light insensitive component, optically induced luminescence dating has the advantage of working only with light sensitive traps in the crystal. Determination of the time since deposition of Quaternary sediment samples from the OSL of quartz grains using blue light was performed. A series of experiments and recent developments relating OSL dating are described, beginning by identifying the features which make OSL signals suitable for the development of dating method. Additionally, there are suggestions as to future research for obtaining reliable ages and a comment on current best practice on procedures, with the dating results of Quaternary sediment.

  • PDF

Review of International Research Cooperation Results for Intercomparison of Luminescence Dating (루미네선스 연대측정 상호비교를 위한 국제공동연구 결과 고찰)

  • Jin Cheul Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.34 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • The Risø Research Institute in Denmark conducted the luminescence dating intercomparison project, which derives equivalent dose, annual dose, and absolute age results for each laboratory from the same sample, and compares the results between laboratories. This project was carried out from 2006 to 2012. In this project, 30 international laboratories worldwide participated, including the luminescence laboratory at the Korea Institute of Geoscience and Mineral Resources (KIGAM). As a result of the project's synthesis, the average value of the results generally shows an over-dispersion value between laboratories of about 13%. The equivalent dose value obtained through the provided quartz analyzed in KIGAM shows results almost identical to the final equivalent dose value of the project. On the other hand, the equivalent dose value obtained from self-extracted quartz analyzed in KIGAM shows a difference of about 0.9 Gy from the final result of the project, which is thought to be due to the difference in particle size of the separated quartz. This international joint research project is the first large-scale international joint study related to luminescence dating and is expected to have contributed to the reliability and use of luminescence dating internationally.

Applications of OSL method in Archeology (OSL 연대측정법의 고고학적 적용)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Shin, Sook-Chung
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.28-38
    • /
    • 2006
  • Since the radioactivity of U was discovered by Becquerel in 1896, a number of radiometric dating techniques based on radioactive decay have been developed with the help of precise and accurate instruments. Among them, radiocarbon dating was introduced as the most effective method in archeology in Korea. However, though the radiocarbon methods have contributed greatly to the development of archeology in Korea, it is limited to organics in a matrix of soil and sediment, including organic carbon, charcoal, bone and so on. If there are no organics in some paleolitic sites, other methods are required for dating. Therefore, we introduced OSL (Optically Stimulated Luminescence) dating method in this paper. The method is mainly based on quartz grains or other particles. The aim of this paper is to discuss about sampling method and the limitation of its application in archeology.

  • PDF

Optically stimulated luminescence dating of heated materials from the early Bronze age in central Korea (한국 중부지역 청동기시대 전기 유적의 광 여기 루미네선스를 이용한 연대측정)

  • Kim, Myung-Ji;Hong, Duk-Geun
    • Journal of Conservation Science
    • /
    • v.16 s.16
    • /
    • pp.5-14
    • /
    • 2004
  • Luminescence dating is based upon the premise that several commonly occurring minerals (e.g. quartz and feldspar) can be used as natural dosimeters, recording the amount of radiation to which they have been exposed. We report results of optical dating on quartz samples separated from archaeological remains (burnt soils and potteries), which were excavated at Myungam-Ri, Asan, and Chungnam province and at Sayang-Ri, Chinchun, Chungbuk province, considered as the cultural site of the early Bronze Age. The resultant dates were in good agreement with the ages derived by archaeological assessment. It is concluded that the optical dating introduced in here should contribute significantly to future archaeological dating work.

  • PDF

Optically Stimulated Luminescence Dating on the Quaternary deposits in Yonghan-ri, Heunghae-eup, Pohang City, South Korea (포항시 흥해읍 용한리지역에 분포하는 제4기 퇴적층의 OSL 연대)

  • JUNG, Hea Kyung;Kim, Cheong Bin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.141-145
    • /
    • 2019
  • This study investigated Quaternary sand deposits in the process of surveying Quaternary deposits distributed in Yonghan-ri, Heunghae-eup, Pohang city. Field geological surveys were conducted and OSL dating samples were taken. The altitude of the Quaternary sand deposits layer is about 15m, and there are two upper and lower sand dune layers, and a peat layer is developed between them. The sampling point are just above the peat layer, and the altitude level is about 13.4m (YHO-1) and about 13.7m (YHO-2). OSL dating was performed for YHO-1 and YHO-2 and the results were 69 ± 6 ka and 62 ± 5 ka, respectively. The date analyzed are interpreted as MIS 4. On the other hand, the formation time of the peat layer at an altitude of about 13.2 to 13.7m can be compared with the results of the OSL dating of the above sandy deposits. The peat layer can be inferred to have formed during MIS 5a or earlier.

The Formative Processes and Ages of Paleo-coastal Sediments in Daepo-dong Sacheon-si in the Southern Coast, South Korea: Evaluation of the Mode and Rate of the Late Quaternary Tectonism (II) (남해안 사천시 대포동 일대에 분포하는 고해안 퇴적물의 형성 과정과 형성 시기: 한반도 제4기 후기 지각운동의 양식과 변형률 산출을 위한 연구(II))

  • Shin, Jaeryul;Hong, Seongchan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.57-70
    • /
    • 2018
  • This study restores onshore paleo-shoreline records and establishes the nature and strain rate of neotectonism by investigating the existence and formative age of paleo-coastal sediments emerged around Sacheon-si in the Southern part of the Korean peninsula. As a result, paleo-sand bars representing 5m of the paleo-shoreline from high tide level are formed in Sacheon-si, and the formation age of these is confirmed as MIS 5c at approximately 100,000 year BP through rock surface luminescence dating to rounded gravels in paleo-sand bars. Although it is difficult to establish the uplift rate of crust precisely due to incomplete restoration of sea level records during the last interglacial stage, the uplift rate along the Southern coast of the peninsula was assumed approximately 0.72 lower than the Eastern coast during the late Quaternary in comparison to the 1st marine terrace along the Eastern coast.

Characteristics of Luminescence Signals According to the Depositional Environment (퇴적 환경에 따른 루미네선스 신호의 특성)

  • Hong, Seongchan;Choi, Kwang Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.59-70
    • /
    • 2021
  • This study aims to determine the sunlight exposure according to depositional environment to improve the accuracy of optically simulated luminescence (OSL) dating. Sufficient sunlight exposure during transportation of sediment is a basic assumption of the OSL dating, and if the process does not occur enough, the results may be overestimated compared to the actual depositional age. Therefore, the main purpose of this study is to establish a correction method by determining residual or unbleachable dose after sunlight exposure in the actual deposition process, not in the laboratory measurement. Four samples from two sites were collected according to the depositional environment from rivers and coasts, and various OSL signals, including the size of residual dose, degree of dispersion between grains, and OSL signal sensitivity, were measured. As a result, it was confirmed that sediments formed under temporarily high energy environments, such as floods and surges, had relatively high residual dose or large dispersion of residual dose between particles. In further studies, the OSL signal characteristics of river sediments by flow velocity will be identified and the relationship between energy and OSL signal characteristics will be identified in more detail. Moreover, a method of reconstructing the paleo-environment at the time of deposition for existing sediments will be devised. It is expected to provide important information for the frequency of disaster recurrence and prediction of future climate change.