• Title/Summary/Keyword: luminance mapping

Search Result 34, Processing Time 0.025 seconds

Improvements of Temperature Field Measurement Technique using Neural Network (신경망을 이용한 온도장 측정법 개선 방안)

  • Hwang Tae Gyu;Moon Ji Seob;Chang Tae Hyun;Doh Deog Hee
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.52-55
    • /
    • 2004
  • Thermo-chromic Liquid Crystal(TLC) particles were used as temperature sensor for thermal fluid flow. $1K\times1K$ CCD color camera and Xenon Lamp(500W) were used for the visualization of a Hele-Shaw cell. The characteristic between the reflected colors from the TLC and their corresponding temperature shows strong non-linearity. A neural network known as having strong mapping capability for non-linearity is adopted to quantify the temperature field using the image of the flow. Improvements of color-to-temperature mapping was attained by using the local color luminance (Y) and hue (H) information as the inputs for the constructed neural network.

  • PDF

Improvements of Temperature Field Measurement Technique using Neural Network (신경망 적용의 온도장 측정법 개선 방안)

  • Doh Deog Hee;Kim Dong Hyuk;Bang Kwang Hyun;Moon Ji Seob;Hong Seong Dae;Chang Tae Hyun;Hwang Tae Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.209-216
    • /
    • 2005
  • Thermo-chromic Liquid Crystal(TLC) particles were used as temperature sensor for thermal fluid flow. 1K $\times$ 1K CCD color camera and Xenon Lamp(500w) were used for the visualization of a Hele-Shaw cell The characteristic between the reflected colors from the TLC and their corresponding temperature shows strong non-linearity A neural network known as having strong mapping capability for non-linearity is adopted to quantify the temperature field using the image of the flow. Improvements of color-to-temperature mapping was attained by using the local color luminance (Y) and hue (H) information as the inputs for the constructed neural network.

Gamma Correction for Local Brightness and Detail Enhancement of HDR Images (HDR 영상의 지역적 밝기 및 디테일 향상을 위한 감마 보정 기법)

  • Lee, Seung-Yun;Ha, Ho-Gun;Song, Kun-Woen;Ha, Yeong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.837-847
    • /
    • 2016
  • Tone mapping for High Dynamic Range(HDR) image provides matching human visual perception between real world scene and displayable devices. Recently, a tone mapping algorithm based on localized gamma correction is proposed. This algorithm is using human visual properties of contrast and colorfulness with background intensity, generating a weight map for gamma correction. However, this method have limitations of controlling enhancement region as well as generating halo artifacts caused by the weight map construction. To overcome aforementioned limitations, proposed algorithm in this paper modifies previous weight map, considering base layer intensity of input luminance channel. By determining enhancement region locally and globally based on base layer intensity, gamma values are corrected accordingly. Therefore, proposed algorithm selectively enhances local brightness and controls strength of edges. Subjective evaluation using z-score shows that our proposed algorithm outperforms the conventional methods.

An Adaptive Image Enhancement Algorithms Using Saturation Improvement (채도 향상을 이용한 적응형 화질 개선 알고리듬)

  • Jo, Young-Sim;Yun, Jong-Ho;Park, Jin-Sung;Choi, Myung-Ryul
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1455-1464
    • /
    • 2006
  • In this paper, we propose an adaptive image enhancement algorithm. The proposed algorithm is classified with the MIE technique for intensity enhancement of input image and MSE techniques for saturation enhancement. The MIE technique is proposed to control the gamut mapping problem and a sudden change in image-brightness while Luminance signal is processing, The MSE techniques are proposed to control de-saturation or over-saturation while chrominance signal is processing. The proposed algorithm is focused on processing preference color for human vision in order to generate better image quality than the algorithms focused on processing uniformly to whole images, This algorithm can be applied to a monitor, TV and other display devices for high quality image.

  • PDF

Super Resolution Reconstruction from Multiple Exposure Images (노출이 다른 다수의 입력 영상을 사용한 초해상도 영상 복원)

  • Lee, Tae-Hyoung;Ha, Ho-Gun;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • Recent research efforts have focused on combining high dynamic range imaging with super-resolution reconstruction to enhance both the intensity range and resolution of images. The processes developed to date start with a set of multiple-exposure input images with low dynamic range (LDR) and low resolution (LR), and require several procedural steps: conversion from LDR to HDR, SR reconstruction, and tone mapping. Input images captured with irregular exposure steps have an impact on the quality of the output images from this process. In this paper, we present a simplified framework to replace the separate procedures of previous methods that is also robust to different sets of input images. The proposed method first calculates weight maps to determine the best visible parts of the input images. The weight maps are then applied directly to SR reconstruction, and the best visible parts for the dark and highlighted areas of each input image are preserved without LDR-to-HDR conversion, resulting in high dynamic range. A new luminance control factor (LCF) is used during SR reconstruction to adjust the luminance of input images captured during irregular exposure steps and ensure acceptable luminance of the resulting output images. Experimental results show that the proposed method produces SR images of HDR quality with luminance compensation.

Novel Robust High Dynamic Range Image Watermarking Algorithm Against Tone Mapping

  • Bai, Yongqiang;Jiang, Gangyi;Jiang, Hao;Yu, Mei;Chen, Fen;Zhu, Zhongjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4389-4411
    • /
    • 2018
  • High dynamic range (HDR) images are becoming pervasive due to capturing or rendering of a wider range of luminance, but their special display equipment is difficult to be popularized because of high cost and technological problem. Thus, HDR images must be adapted to the conventional display devices by applying tone mapping (TM) operation, which puts forward higher requirements for intellectual property protection of HDR images. As the robustness presents regional diversity in the low dynamic range (LDR) watermarked image after TM, which is different from the traditional watermarking technologies, a concept of watermarking activity is defined and used to distinguish the essential distinction of watermarking between LDR image and HDR image in this paper. Then, a novel robust HDR image watermarking algorithm is proposed against TM operations. Firstly, based on the hybrid processing of redundant discrete wavelet transform and singular value decomposition, the watermark is embedded by modifying the structure information of the HDR image. Distinguished from LDR image watermarking, the high embedding strength can cause more obvious distortion in the high brightness regions of HDR image than the low brightness regions. Thus, a perceptual brightness mask with low complexity is designed to improve the imperceptibility further. Experimental results show that the proposed algorithm is robust to the existing TM operations, with taking into account the imperceptibility and embedded capacity, which is superior to the current state-of-art HDR image watermarking algorithms.

A HDR video tone mapping operator reducing the flickering artifact by using average luminance of frames (프레임 평균 밝기를 이용하여 프레임간 깜박임 현상을 줄이는 HDR 동영상 톤 매핑 방법)

  • Kim, Dae Eun;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.455-456
    • /
    • 2015
  • 본 논문은 HDR(high dynamic range) 동영상을 기존의 LDR(low dynamic range) 디스플레이 단말에 표현하기 위해 톤 매핑을 수행할 때 발생할 수 있는 프레임간 깜박임 현상(flickering artifact)을 줄이는 방법에 관한 연구이다. HDR 동영상의 톤 매핑 문제에 있어 HDR 정지영상을 대상으로 개발된 많은 톤 매핑 방법을 그대로 적용하는 경우 시간 축 정보가 고려되지 않아서 깜박임 현상이 발생하여, 주관적 화질을 떨어뜨리는 결과를 초래한다. 이러한 프레임간 깜박임 현상을 줄이기 위해, 본 논문에서는 프레임의 평균 밝기 정보를 이용하여 HDR 동영상 통 매핑 과정에서 프레임간의 밝기 일관성이 유지하도록 하는 방법을 제안한다.

  • PDF

Image Enhancement based on Piece-wise Linear Enhancement Curves for Improved Visibility under Sunlight (햇빛 아래에서 향상된 시인성을 위한 Piece-wise Linear Enhancement Curves 기반 영상 개선)

  • Lee, Junmin;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.812-815
    • /
    • 2022
  • Images displayed on a digital devices under the sunlight are generally perceived to be darker than the original images, which leads to a decrease in visibility. For better visibility, global luminance compensation or tone mapping adaptive to ambient lighting is required. However, the existing methods have limitations in chrominance compensation and are difficult to use in real world due to their heavy computational cost. To solve these problems, this paper propose a piece-wise linear curves (PLECs)-based image enhancement method to improve both luminance and chrominance. At this time, PLECs are regressed through deep learning and implemented in the form of a lookup table to real-time operation. Experimental results show that the proposed method has better visibility compared to the original image with low computational cost.

Human Visual System based Automatic Underwater Image Enhancement in NSCT domain

  • Zhou, Yan;Li, Qingwu;Huo, Guanying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.837-856
    • /
    • 2016
  • Underwater image enhancement has received considerable attention in last decades, due to the nature of poor visibility and low contrast of underwater images. In this paper, we propose a new automatic underwater image enhancement algorithm, which combines nonsubsampled contourlet transform (NSCT) domain enhancement techniques with the mechanism of the human visual system (HVS). We apply the multiscale retinex algorithm based on the HVS into NSCT domain in order to eliminate the non-uniform illumination, and adopt the threshold denoising technique to suppress underwater noise. Our proposed algorithm incorporates the luminance masking and contrast masking characteristics of the HVS into NSCT domain to yield the new HVS-based NSCT. Moreover, we define two nonlinear mapping functions. The first one is used to manipulate the HVS-based NSCT contrast coefficients to enhance the edges. The second one is a gain function which modifies the lowpass subband coefficients to adjust the global dynamic range. As a result, our algorithm can achieve contrast enhancement, image denoising and edge sharpening automatically and simultaneously. Experimental results illustrate that our proposed algorithm has better enhancement performance than state-of-the-art algorithms both in subjective evaluation and quantitative assessment. In addition, our algorithm can automatically achieve underwater image enhancement without any parameter tuning.

Analysis of Color Visualization in High Dynamic Range Image (높은 동적 범위 영상에서 색상 시각화 분석)

  • Lee, Yong-Hwan;Kim, Heung-Jun;Kim, Bong-Gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.705-708
    • /
    • 2015
  • High dynamic range (HDR) imaging is a techniques used in imaging to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging. Tone mapping of HDR images for realistic display is commonly studied. However, scientific visualization of HDR image for analysis of scene luminance has much less attention. In this paper, we present and implement a simple approach for the reproduction and visualization of color information in HDR images. We attempt several simple color visualizing functions, and estimate their effectiveness through the evaluation factors with common HDR images.

  • PDF